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Abstract. We introduce Solar, the first reflection analysis that allows
its soundness to be reasoned about when some assumptions are met
and produces significantly improved under-approximations otherwise. In
both settings, Solar has three novel aspects: (1) lazy heap modeling
for reflective allocation sites, (2) collective inference for improving the
inferences on related reflective calls, and (3) automatic identification of
“problematic” reflective calls that may threaten its soundness, precision
and scalability, thereby enabling their improvement via lightweight anno-
tations. We evaluate Solar against two state-of-the-art solutions, Doop
and Elf, with the three treated as under-approximate reflection analyses,
using 11 large Java benchmarks and applications. Solar is significantly
more sound while achieving nearly the same precision and running only
several-fold more slowly, subject to only 7 annotations in 3 programs.

1 Introduction

Reflection is increasingly used in a range of software and framework architec-
tures, allowing a software system to choose and change implementations of ser-
vices at run-time, but posing significant challenges to static program analysis.
In the case of Java programs, reflection has always been an obstacle for pointer
analysis [1–10], a fundamental static analysis on which virtually all others [11–
16] are built. All pointer analysis tools for Java [2, 17–19] either ignore reflection
or handle it partially since their underlying best-effort reflection analyses [5, 17,
18, 20–22] provide only under-approximated handling of reflection heuristically.

However, such unsoundness can render much of the codebase invisible for
analysis. There is a recent community initiative [23] calling for the development
of soundy analysis to handle “hard” language features (such as reflection). A
soundy analysis is one that is as sound as possible without excessively compro-
mising precision and/or scalability. Thus, improving or even achieving soundness
in reflection analysis will provide significant benefits to many clients, such as pro-
gram verifiers, optimizing compilers, bug detectors and security analyzers.

In this paper, we make the following contributions:

– We introduce Solar, the first reflection analysis that allows its soundness
to be reasoned about when some reasonable assumptions are met and yields
significantly improved under-approximations otherwise (Section 2). We have
developed Solar by adopting three novel aspects in its design: (N1) lazy
heap modeling for reflective allocation sites, (N2) collective inference for



related reflective calls, and (N3) automatic identification of “problematic”
reflective calls that may threaten its soundness, precision and scalability.

– We formalize Solar as part of a pointer analysis for Java (including a small
core of its reflection API) and reason about its soundness under a set of
assumptions (Section 3). We have produced an open source implementation
on top of Doop [18], which is a modern pointer analysis tool for Java.

– We evaluate Solar against two state-of-the-art reflection analyses, Doop [5]
and Elf [21], with 11 large Java benchmarks/applications (Section 4), where
all the three are treated as under-approximate analyses (due to, e.g., native
code). By instrumenting these programs under their associated inputs (when
available), Solar is the only one to achieve total recall (for all reflective tar-
gets accessed), with 371% (148%) more target methods resolved than Doop
(Elf) in total, which translates into 49700 (40570) more true caller-callee re-
lations statically calculated w.r.t. these inputs alone. Solar has done so by
maintaining nearly the same precision as and running only several-fold more
slowly than Elf and Doop, subject to only 7 annotations in 3 programs.

2 Methodology

Fig. 1 illustrates an example of reflection usage abstracted in real code. In line 2,
a Class metaobject c1 is created by calling Class.forName(cName) to represent
the class named cName, where cName, i.e., cName1 in line 10 is an input string
to be read from a command line or a configuration file. In line 3, an object o
is reflectively created as an instance of c1 by calling c1.newInstance() and
then assigned to v with the declared type as Java.lang.Object in line 10.
Subsequently, o is used in two common scenarios. In the if branch, o is downcast
to a specific type, A, and then used appropriately. The else branch is more
interesting. In line 14, a Method metaobject m is created by calling getMethod()

indirectly in line 7, with its class name, method name and formal parameters
specified by cName2, mName2 and “. . . ” (elided) in line 7, respectively. In line 15,
this method is called reflectively on the receiver object o (pointed to by v) with
the actual argument being passed in an array, new Object[] {x, y}.

1  Object createObj(String cName) {
2     Class c1 = Class.forName(cName);
3     return c1.newInstance(); 
4  }

5  Method getMtd(String cName, String mName) {
6     Class c2 = Class.forName(cName);
7     return c2.getMethod(mName, ... ); 
8  }

9  void foo(X x, Y y, … ) {
10     Object v = createObj(cName1); //cName1 is an input string
11     if ( … ) {
12         A a = (A) v; 

13     } else { 

14         Method m = getMtd(cName2, mName2);
15         m.invoke(v, new Object[] {x, y});
16     }
17  }

 … 

 … 

Fig. 1. An example of reflection usage abstracted from JDK 1.6.0 45.

A reflection analysis infers, i.e., resolves statically the reflective targets ac-
cessed at reflective call sites. As usual, soundnesss demands over-approximation.
Reflection introduces many challenges for static analysis. First, a modern reflec-
tion API is large and complex. Second, reflection is typically used as a means



of supporting dynamic adaptation of object-oriented software. As such, metaob-
jects are often created reflectively as shown in Fig. 1 from input strings. Thus,
reflective object creation via newInstance() is hard to model statically. Finally,
picking judicious approximations to balance soundness, precision and scalability
is non-trivial. A simple-minded sound modeling of a reflective call (e.g., by as-
suming arbitrary behaviour) would destroy precision. Imprecision, in turn, often
destroys scalability because too many spurious results would be computed.

Solar automates reflection analysis for Java by working with a pointer anal-
ysis. We first define some assumptions (Section 2.1). We then look at the three
limitations of the prior work (Section 2.2). Finally, we introduce Solar to ad-
dress these limitations by adopting three novel aspects in its design (Section 2.3).

2.1 Assumptions

The first three are made previously on reflection analysis for Java [20, 21]. The
last one is introduced to allow reflective allocation sites to be modeled lazily.
Assumption 1 (Closed-World). Only the classes reachable from the class path
at analysis time can be used during program execution.

This assumption is reasonable since we cannot expect static analysis to han-
dle all classes that a program may conceivably download from the net and load
at runtime. In addition, Java native methods are excluded as well.
Assumption 2 (Well-Behaved Class Loaders). The name of the class returned
by a call to Class.forName(cName) equals cName.
Assumption 3 (Correct Casts). Type cast operations applied to the results of
reflective calls are correct, without throwing a ClassCastException.
Assumption 4 (Object Reachability). Every object o created reflectively in a
call to newInstance() flows into (i.e., is used in) either (1) a type cast operation
...= (T) v or (2) a call to invoke(v,...), get(v) or set(v,...), where v

points to o, along every execution path in the program.
As discussed in Section 4.2, Assumption 4 is found to hold for most reflective

allocation sites in real code (as illustrated in Fig. 1). Here, (1) and (2) represent
two kinds of usage points at which the class types of object o will be inferred
lazily. This makes it possible to handle reflective allocation sites more accurately
than before and to reason about the soundness of Solar for the first time.

2.2 Past Work: Best-Effort Reflection Resolution

All the existing solutions [5, 17, 18, 20–22] adopt a best-effort approach to reflec-
tion analysis, and consequently, suffer from the following three limitations:

L1. Eager Heap Modeling An abstract object o created at a call to, e.g.,
c.newInstance() is modeled eagerly if its type c can be inferred from a string
constant or intraprocedural post-dominant cast, and ignored otherwise. Specifi-
cally, if c represents a known class name, e.g., “A”, then o’s type is “A”. Other-
wise, an intraprocedurally post-dominating cast operation (T) operating on the
result of the newInstance() call will allow c to be over-approximated as T or
any of its subtypes. This eager approach often fails in real code shown in Fig. 1,
where cName1 is an input string and the cast is not post-dominating. Thus, its



newInstance() call is ignored. Recently, in Doop (r5459247-beta) [18], the ob-
jects created in line 10 (or line 3) are assumed to be of type A by taking advantage
of the non-post-dominating cast (A) in line 12 to analyze more code. However,
the objects with other types created along both the if and else branches are
ignored. In prior work, such under-approximate handling of newInstance() is
a significant source of unsoundness, as a large part of the program called on the
thus ignored objects has been rendered invisible for analysis.

L2. Isolated Inferences Many reflective calls (e.g., those in Fig. 1) are related
but analysed mostly in isolation, resulting in under-approximated behaviours. In
[21], we presented a self-inferencing reflection analysis, called Elf, that can infer
more targets at a reflective call site than before [5, 17, 18, 20, 22], by exploiting
more information available (e.g., from its arguments and return type). However,
due to eager heap modeling, Elf will still ignore the invoke() call in line 15 as
v points to objects of unknown types as discussed above.

L3. Design-Time Soundness, Precision and Scalability When analysing
a program heuristically, a best-effort approach does not know which reflective
calls may potentially affect its soundness, precision and scalability. As a result,
a developer is out of luck with a program if such best-effort analysis is either
unscalable or scalable but with undesired soundness or precision or both.

2.3 Solar: Soundness-Guided Reflection Resolution

Fig. 2 illustrates the Solar design, with its three novel aspects marked by N1
– N3, where Ni is introduced to overcome the afore-mentioned limitation Li.
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Fig. 2. Solar: a soundness-guided analysis with three novel aspects, N1 – N3.

N1. Lazy Heap Modeling (LHM) Solar handles reflective object creation
lazily by delaying the creation of objects at their usage points where their types
may be inferred, achieving significantly improved soundness and precision.

Let us describe the basic idea behind using the example in Fig. 1. As cName at
c1 = Class.forName(cName) in line 2 is unknown, Solar will create a Class

metaobject c1u that represents this unknown class and assign it to c1. As c1

points to c1u at the allocation site v = c1.newInstance() in line 3, Solar will
create an abstract object ou3 of an unknown type for the site to mark it as being
unresolved yet. Subsequently, ou3 will flow into two usage points: Case (I) a type
cast operation in line 12 and Case (II) a reflective method call site in line 15.

In Case (I), where ou3 is downcast to A, its type u is inferred to be A or any
of its subtypes. Let t1, . . . , tn be all the inferred types. Then ou3 is split into n



distinct objects ot13 ,. . . , otn3 to be assigned to a in line 12. In Case (II), Solar
will infer u by performing a collective inference as described below, based on the
information available in line 15. Let t11, . . . , t

1
m be all the inferred types. Then ou3

is split into m distinct objects o
t1
1
3 ,. . . , o

t1
m
3 to be assigned to v in line 15.

According to Assumption 4 that states a key observation validated later, a
reflectively created object like ou3 is typically used in either Case (I) or Case (II)
along every program path. The only but rare exception is that ou3 is created but
never used later. Then the corresponding constructor must be annotated to be
analyzed statically unless ignoring it will not affect the points-to information.

N2. Collective Inference Solar builds on the prior work [5, 17, 18, 20, 22, 21]
by relying on collective inference emphasized for the first time in reflection anal-
ysis. Let us return to the invoke() call, which cannot be analyzed previously.
As v points to ou3 , Solar can infer u based on the information available at the
call site. This happens when Case (1) cName2 is known or Case (2) cName2 is
unknown but mName2 is known. In Solar, inference is performed “collectively”,
whereby inferences on related reflective calls (lines 3, 6 and 15 for Case (1) and
lines 3, 7 and 15 for Case (2)) can mutually reinforce each other. We will examine
the second case, i.e., the more complex of the two, in Section 3.4.3. This paper
is the first to do so by exploiting the connection between newInstance() (via
LHM) and reflective calls for manipulating methods and fields.

N3. Automatic Identification of “Problematic” Reflective Calls Due
to this capability, Solar is the first that can reason about its soundness. When
such reasoning is not possible due to, e.g., native code, Solar reduces to an
effective under-approximate analysis due to its soundness-guided design, allowing
a disciplined tradeoff to be made among soundness, precision and scalability.

If Solar is scalable for a program, Solar can automatically identify “prob-
lematic” reflective calls (as opposed to reporting input strings as in [20]) that
may threaten its soundness and precision to enable both to be improved with
lightweight annotations. If Solar is unscalable for a program, a simplified ver-
sion of Solar, denoted Probe in Fig. 2, is called for next. With some “prob-
lematic” reflective calls to be annotated, Solar will re-analyze the program,
scalably after one or more iterations of this “probing” process. We envisage
providing a range of Probe variants with different tradeoffs among soundness,
precision and scalability, so that the scalability of Probe is always guaranteed.

Consider Fig. 1 again. If both cName2 and mName2 are unknown (given that
the type of ou3 is unknown), then Solar will flag the invoke() call in line
15 as being potentially unsoundly resolved, detected automatically by verifying
Condition (3) in Section 3.5. In addition, Solar will also automatically highlight
reflective calls that may be potentially imprecisely resolved. Their lightweight
annotations will allow Solar to yield improved soundness and precision.

Discussion Under Assumptions 1 – 4, we can establish the soundness of So-
lar by verifying a soundness criterion (given in Section 3.5). Otherwise, our
soundness-guided approach has made Solar demonstrably more effective than
existing under-approximate reflection analyses [5, 17, 20, 21] as validated later.



3 Formalism

We formalise Solar, illustrated in Fig. 2, for RefJava, which is Java restricted
to a small core of its reflection API. Solar is flow-insensitive but context-
sensitive. However, our formalisation is context-insensitive.

3.1 The RefJava Language

RefJava consists of all Java programs (under Assumptions 1 – 4) except that the
Java reflection API is restricted to the four methods in Fig. 1: Class.forName(),
newInstance(), getMethod() and invoke(). Our formalism is designed to allow
its straightforward generalization to the entire API. For example, reflective field
accesses via getField(), get() and set() can be handled similarly. As is stan-
dard, a Java program is represented only by five kinds of statements in the SSA
form, as shown in Fig. 5. For simplicity, we assume that all the methods of a class
accessed reflectively are its instance members, i.e., v ‰ null in invoke(v,...)

in Fig. 1. We will discuss how to handle static members in Section 3.9.

3.2 Road Map
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Fig. 3. Solar’s inference system.

As depicted in Fig. 3, Solar’s in-
ference system, which consists of five
components, works together with a
pointer analysis. The arrow ÐÑ be-
tween a component and the pointer
analysis indicates that each is both a
producer and consumer of the other.

Let us see how Solar resolves the
invoke() call in Fig. 1. If cName2 and mName2 are string constants, Propagation
will create a Method metaobject (pointed to by m) carrying its known class and
method information and pass it to Target Search ( 1 ). If cName2 or mName2 is
not a constant, a Method metaobject marked as such is created and passed to
Inference ( 2 ), which will infer the missing information and pass a freshly gener-
ated Method metaobject enriched with the missing information to Target Search
( 3 ). Then Target Search maps a Method metaobject to its reflective target mtd
in its declaring class ( 4 ). Finally, Transformation turns the reflective call in line
15 into a regular call v.mtd(...) and pass it to the pointer analysis ( 5 ). Lazy
Heap Modeling handles newInstance() in Fig. 1 to resolve the dynamic type of
v based on the information discovered by Propagation ( a ) or Inference ( b ).

3.3 Notations

We will use the notations in Fig. 4. A method signature consists of the method
name and descriptor (i.e., return type and parameter types) and, a method is
specified by its method signature and the class where it is declared or inherited.
CO and MO represent the set of Class and Method metaobjects, respectively.
In particular, ct denotes a Class metaobject of a known class t and cu a Class

metaobject of an unknown class u. As illustrated earlier with Fig. 1, we write oti



to represent an abstract object created at an allocation site i if it is an instance
of a known class t and oui of (an unknown class type) otherwise. For a Method

metaobject, we write mts if it is a member in a known class t and mus otherwise,
with its signature being s. In particular, we write mu as a shorthand for ms when s
is unknown (with the return type s.tr being ignored), i.e., when s.nm “ s.p “ u.

class type t P T Class metaobject ct, cu P CO
method name nm P N Method metaobject* mts, mtu, mus , muu P MO = pT ˆ Sm
parameter types p P P “ T0

Y T1
Y T2 . . . method signature* s P Sm = pT ˆ pN ˆ pP

method m P M “ Tˆ Tˆ Nˆ P return type* s.tr P pT
local variable c,m P V method name* s.nm P pN
abstract heap object ot1, o

t
2, . . . , o

u
1 , o

u
2 , ¨ ¨ ¨ P H parameter types* s.p P pP

Fig. 4. Notations ( pX “ X Y tuu, where u is an unknown class type or an unknown
method signature). A superscript ‘*’ marks a domain that contains u.

3.4 The Solar’s Inference System

We present the inference rules used by all the components in Fig. 3, starting
with the pointer analysis and moving to the five components of Solar.

3.4.1 Pointer Analysis Fig. 5 gives a standard formulation of a flow-insensitive
Andersen’s pointer analysis for RefJava. pt(x) represents the points-to set of
a pointer x. An array object is analyzed with its elements collapsed to a single
field, denoted arr. For example, x[i] = y can be seen as x.arr = y. In [A-New],
oti uniquely identifies the abstract object created as an instance of t at this
allocation site, labeled by i. In [A-Ld] and [A-St], the field accesses are handled.

i : x “ new tpq

totiu P ptpxq
[A-New]

x “ y

ptpyq Ď ptpxq
[A-Cpy]

x “ y.f oti P pt(y)

ptpoti.fq Ď pt(x)
[A-Ld]

x.f “ y oti P pt(x)

pt(y) Ď ptpoti.fq
[A-St]

x “ y.mparg1, ..., argnq oi P pt(y) m1
“ dispatchpoi ,mq

toi u Ď ptpm1
this) ptpm1

ret) Ď pt(x) @ 1 ď k ď n : ptpargkq Ď ptpm1
pk)

[A-Call]

Fig. 5. Rules for Pointer Analysis.

In [A-Call] (for non-reflective calls), the function dispatchpoi ,mq is used to
resolve the virtual dispatch of method m on the receiver object oi to be m1 (when
m is invokable on oi ). Following [24], we assume that m1 has a formal parameter
m1this for the receiver object and m1p1, . . . ,m

1
pn for the remaining parameters,

and a pseudo-variable m1ret is used to hold the return value of m1.

3.4.2 Propagation Fig. 6 gives the rules for forName() and getMethod()

calls. Depending on whether their arguments are string constants or not, differ-
ent kinds of Class and Method metaobjects are created. SC is a set of string
constants and toClass returns a Class metaobject ct, where t is the class speci-
fied by the string value returned by val(oi) (with val : HÑ java.lang.String).

By design, ct and mts will flow to Target Search but all the others, i.e., cu, mu

and mu will flow to Inference, where the missing information is inferred. During
Propagation, only the name of a method signature s (i.e., s.nm) can be discovered
but its other parts are unknown: s.tr “ s.p “ u.



Class c “ Class.forNamepcNameq o
String
i P pt(cName)

ptpcq Ě

"

tctu if o
String
i P SC

tcuu otherwise
ct “ toClasspvalpo

String
i qq

[P-ForName]

Method m “ c1.getMethodpmName, ...q o
String
i P pt(mName) c P pt(c1)

ptpmq Ě

$

’

’

’

&

’

’

’

%

tmtsu if c “ ct ^ o
String
i P SC

tmtuu if c “ ct ^ o
String
i R SC

tmus u if c “ cu ^ o
String
i P SC

tmuuu if c “ cu ^ o
String
i R SC

s.tr “ u

s.nm “ valpo
String
i q

s.p “ u

[P-GetMtd]

Fig. 6. Rules for Propagation.

3.4.3 Inference Fig. 7 gives three rules to infer the reflective target methods
for x = (A) m.invoke(y,args), where A indicates a post-dominating cast on
its result. If A = Object, then no such cast exists. In [I-InvTp], we use the types of
the objects pointed to by y to infer the class types of the target methods called.
Note that mt represents a freshly generated Method metaobject. In [I-InvSig], we
use the information available at a call site (excluding y) to infer the descriptor in
the signature of a target method. In [I-InvS2T], we use the signature of a method
to infer the class types of the method.

m.invoke(y, args) mu P pt(m)

pt(m) Ě t mt | oti P pt(y)u
[I-InvTp]

x “ pAq m.invoke(y, args) mu P pt(m)

pt(m) Ě t ms | s.p P Ptppargsq, s.tr !: A, s.nm “ uu
[I-InvSig]

x “ pAq m.invoke(y, args) mus P pt(m) oui P pt(y) s.tr !: A s.nm ‰ u s.p P Ptppargsq

pt(m)Ět mts| t PMps.tr, s.nm, s.pqu
[I-InvS2T]

Fig. 7. Rules for Inference.

As is standard, t ă: t1 holds when t is t1 or a subtype of t1. In [I-InvSig] and
[I-InvS2T], !: is used to take advantage of the post-dominating cast (A) during
inference when A is not Object. By definition, u !: Object holds. If t1 is not
Object, then t !: t1 holds if and only if t ă: t1 or t1 ă: t holds. The information
on args is also exploited, where args is an array of type Object[], only when
it can be analyzed exactly element-wise by an intraprocedural analysis. In this
case, suppose that args is an array of n elements. Let Ai be the set of types of
the objects pointed to by its i-th element, args[i]. Let Pi “ tt

1 | t P Ai, t ă: t1u.
Then Ptppargsq “ P0 ˆ ¨ ¨ ¨ ˆ Pn´1. Otherwise, Ptppargsq “ ∅, implying that
args is ignored as it cannot be exploited effectively during inference.

To maintain precision in [I-InvS2T], we use a method signature to infer its
classes when both its name and descriptor are known. In this rule, the function
Mpstr , s.nm, s.pq returns the set of class types where the method with the speci-
fied signature s is declared if s.nm ‰ u and s.p ‰ u, and ∅ otherwise. The return
type of the matching method is ignored if s.tr “ u.

Let us illustrate some of our rules by considering our example in Fig. 1.

Example 1. Note that cName1 is an input string. Suppose that cName2 is also an
input string but mName2 is a string constant. By applying [P-ForName], [P-GetMtd]

and [L-UkwTp] (in Fig. 9) to the calls to forName() in lines 2 and 6, getMethod()
and newInstance(), respectively, we obtain c1u P ptpc1q, c2u P ptpc2q, mus P
ptpmq and oui P ptpvq, where s is a signature with a known method name in
mName2. Given args = new Object[] {x,y}, Ptppargsq is built as described



earlier. Solar can infer the classes t where this method is declared by [I-InvS2T].
Finally, Solar will add all inferred Method objects mts to ptpmq at the call site.

3.4.4 Target Search For a Method object mts in a known class t (with s being
possibly u), we define MTD : MOÑ PpMq to find all target methods matched:

MTDpmtsq “
ď

tă:t1

mtdLookUppt1, s.tr, s.nm, s.pq (1)

where mtdLookUp is the standard lookup function for finding the methods ac-
cording to a declaring class t1 and a signature s except that (1) the return type
s.tr is also considered and (2) any u that appears in s is treated as a wild card.

3.4.5 Transformation Fig. 8 gives the rules used for transforming a reflective
call into a regular statement, which will be analyzed by the pointer analysis.

x “ m.invoke(y, args) mt P pt(m) m1
PMTDpmtq oi P pt(args)

ot
1

j P ptpoi .arrq t2 is declaring type of m1
pk k P r1, ns t1

ă: t2

tot
1

j u Ď ptpargkq x “ y.m1
parg1, ..., argnq

[T-Inv]

Fig. 8. Rules for Transformation.

Let us examine [T-Inv] in more detail. The second argument args points to a 1-
D array of type Object[], with its elements collapsed to a single field arr during
the pointer analysis, unless args can be analyzed exactly intraprocedurally in our
current implementation. Let arg1,. . . , argn be the n freshly created arguments
to be passed to each potential target method m1 found by Target Search. Let
m1p1, . . . ,m

1
pn be the n parameters (excluding this) of m1, such that the declaring

type of m1pk is t2. We include ot
1

j to ptpargkq only when t1 ă: t2 holds in order
to filter out the objects that cannot be assigned to m1pk. Finally, the regular call
obtained can be analyzed by [A-Call] in Fig. 5.

3.4.6 Lazy Heap Modeling Fig. 9 gives the rules for resolving newInstance()

lazily. In [L-KwTp], for each Class object ct pointed to by c1, an object, oti, is
created as an instance of this known type at allocation site i straightaway. In
[L-UkwTp], as illustrated with Fig. 1, oui is created to enable LHM if c1 points to
a cu instead. Then its lazy object creation happens at a type cast by applying
[L-Cast] (with oui blocked from flowing from x to a) and an invoke() call site by
applying [L-Inv]. Note that A is assumed not to be Object in [L-Cast].

i : v “ c1.newInstancepq ct P pt(c1)

totiu Ď pt(v)
[L-KwTp]

i : v “ c1.newInstancepq cu P pt(c1)

toui u Ď pt(v)
[L-UkwTp]

A a “ pAq x oui P pt(x) t ă: A

totiu Ď ptpaq
[L-Cast]

x “ m.invokepy, ...q oui P pt(y) mt P pt(m) t1
!: t

tot
1

i u Ď pt(y)
[L-Inv]

Fig. 9. Rules for Lazy Heap Modeling.

3.5 Soundness Criterion

RefJava consists of the four methods from the Java reflection API as shown in
Fig. 1. Solar is sound if their calls are resolved soundly under Assumptions 1
– 4. By construction, calls to Class.forName() and getMethod() are always



soundly resolved (with the metaobjects created being modelled appropriately).
Due to Assumption 4, there is no need to consider newInstance() calls since
they are soundly resolved if all invoke() calls are. For convenience, we define:

AllKwnpvq “ E oui P ptpvq (2)

which means that the dynamic type of every object pointed to by v is known.
Consider Fig. 7. For the Method metaobjects mts with known classes t, these

targets can be soundly resolved by Target Search, except that the signatures
s can be further refined by applying [I-InvSig]. For the Method objects mus with
unknown class types u, the targets accessed are inferred by [I-InvTp] and [I-InvS2T].
Let us consider a call to (A) m.invoke(y, args). Solar attempts to infer the
missing classes of its Method metaobjects in two ways, by applying [I-InvTp] and
[I-InvS2T]. Such a call is soundly resolved if the following condition holds:

SCpm.invoke(y,args)q “ AllKwnpyq_ @ mus P ptpmq : s.nm ‰ u^Ptppargsq ‰ ∅ (3)

If the first disjunct holds, applying [I-InvTp] to invoke() can over-approximate
its target methods from the types of all objects pointed to by y. Thus, every
Method metaobject mu P ptpmq is refined into a new one mt for every oti P ptpyq.

If the second disjunct holds, then [I-InvS2T] comes into play. Its targets are
over-approximated based on the known method names s.nm and the types of the
objects pointed to by args. Thus, every Method metaobject mus P ptpmq is refined
into a new one mts, where s.tr !: A and s.p P Ptppargsq ‰ ∅. Note that s.tr is
leveraged only when it is not u. The post-dominating cast (A) is considered not
to exist if A = Object. In this case, u !: Object holds (only for u).

Theorem 1. Solar is sound for RefJava if SCpcq holds at every reflective
call c of the form “(A) m.invoke(y, args)” under Assumptions 1 – 4.

3.6 Identifying Unsoundly Resolved Reflective Calls

Solar flags a call c to invoke() as resolved unsoundly if SCpcq is false. This
can be conservative as some points-to information at c can be over-approximate.
However, our evaluation shows that Solar can analyze 7 out of the 10 large
programs considered scalably with full automation, implying that its inference
system is powerful and precise. In addition, all 13 unsound calls reported by
Solar in the remaining three programs are truly unsound, as discussed in Sec-
tion 4.4, validating Solar’s effectiveness in identifying unsoundness.

3.7 Identifying Imprecisely Resolved Reflective Calls

Presently, Solar performs this task depicted in Fig. 2, by simply ranking the
reflective call sites according to the number of reflective targets inferred. This
simple metric often gives a good indication about the sources of imprecision.

3.8 Probe

For evaluation purposes, we instantiate Probe, as shown in Fig. 2, from Solar
as follows. We refrain from performing Solar’s LHM (by retaining [L-UkwTp] but



ignoring [L-Cast] and [L-Inv]) and abandon some of Solar’s sophisticated inference
rules (by disabling [I-InvS2T]). In Target Search, Probe will restrict itself to only
Method metaobjects mts, where the signature s is at least partially known.

3.9 Static Class Members

To handle static class members, our rules can be modified. In Fig. 7, y = null.
[I-InvTp] is not needed (by assuming ptpnullq “ ∅). In (3), the first disjunct is
removed. [I-InvS2T] is modified with oui P ptpyq replaced by y “ null. The rules
in Fig. 8 are modified to deal with static members. In Fig. 9, [L-Inv] is no longer
relevant. The static initializers for the classes in the closed world are analyzed.
This can happen at, say, loads/stores for static fields as is the standard but also
when some classes are discovered in [P-ForName], [L-Cast] and [L-Inv].

4 Evaluation

We have implemented Solar on top of Doop [18], a modern pointer analysis
tool for Java. We compare Solar with two state-of-the-art under-approximate
reflection analyses, Elf [21] and the reflection analysis provided in Doop (also
referred to as Doop). In some programs, Assumptions 1 – 4 may not hold. Thus,
Solar is also treated as being under-approximate. Due to its soundness-guided
design, however, Solar can yield significantly better under-approximations than
Doop and Elf. Like Doop and Elf, Solar is also implemented in the Datalog
language. As far as we know, Solar is more comprehensive in handling the Java
reflection API than the prior reflection analyses [2, 5, 17, 18, 20, 21].

In particular, our evaluation addresses the following research questions (RQs):

– RQ1. How well does Solar achieve full automation without using Probe?
– RQ2. How does Solar identify automatically “problematic” reflective calls

affecting its soundness, precision and scalability, thereby facilitating their
improvement by means of some lightweight annotations?

– RQ3. How significantly does Solar improve recall compared to Doop [18]
and Elf [21], while maintaining nearly the same precision?

– RQ4. How does Solar scale in analysing large reflection-rich applications?

4.1 Experimental Setup

The three reflection analyses are compared by running each together with the
same Doop pointer analysis framework (using its stable version r160113) [18].
For the Doop framework, we did not use its beta release (r5459247). The beta
release handles a larger part of the Java reflection API but discovers fewer reflec-
tive targets in our recall experiment, since it ignores reflective targets whose class
types are in the libraries (for efficiency reasons). All the three reflection analyses
operate on the SSA form of a program emitted by Soot [19], context-sensitively
under selective-2-type-sensitive+heap provided by Doop.

We use the LogicBlox Datalog engine (v3.9.0) on a Xeon E5-2650 2GHz ma-
chine with 64GB of RAM. We consider 7 large DaCapo benchmarks (2006-10-
MR2) and 4 real-world applications, avrora-1.7.115 (a simulator), checkstyle-
4.4 (a checker), freecs-1.3.20111225 (a server) and findbugs-1.2.1 (a bug de-
tector), under a large reflection-rich Java library, JDK 1.6.0 45.



4.2 Assumptions

When analysing real code under-approximately, we accommodate Assumptions 1
– 4 as follows. For Assumption 1, we rely on Doop’s pointer analysis to simulate
the behaviors of Java native methods. Dynamic class loading is assumed to be
resolved separately [25]. To simulate its effect, we create a closed world for a
program, by locating the classes referenced with Doop’s fact generator and
adding additional ones found through program runs under TamiFlex [22]. For
the DaCapo benchmarks, avrora and checkstyle, their associated inputs are
used. For findbugs, one Java program is developed as its input. For freecs, a
server requiring user interactions, we only initialize it as the input in order to
ensure repeatability. Assumptions 2 and 3 are taken for granted.

As for Assumption 4, we validate it for all reflective allocation sites where
oui is created in the application code of the 10 programs that can be analyzed
scalably. This assumption is found to hold at 75% of these sites automatically
by performing a simple intraprocedural analysis. We have inspected the remain-
ing 25% interprocedurally and found only two violating sites (in eclipse and
checkstyle), where oui is never used. In the other sites inspected, oui flows
through only local variables with all the call-chain lengths being at most 2.

4.3 RQ1: Full Automation

Fig. 10 compares Solar and existing reflection analyses [5, 17, 18, 20–22] de-
noted by “Others” by the degree of automation achieved. For an analysis, this
is measured by the number of annotations required in order to improve the
soundness of the reflective calls identified to be potentially unsoundly resolved.
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Fig. 10. The number of annotations re-
quired for improving the soundness of un-
soundly resolved reflective calls.

Solar analyzes 7 out of the 11 pro-
grams scalably with full automation.
For hsqldb, xalan and checkstyle,
Solar is unscalable (under 3 hours).
With Probe, 13 reflective calls are
flagged as being potentially un-
soundly resolved. After 7 annotations,
2 in hsqldb, 2 in xalan and 3 in
checkstyle, Solar is scalable, as
discussed in Section 4.4. However, So-
lar, like Doop and Elf, is unscalable
(under 3 hours) for jython, an inter-
preter for Python in which the Java

libraries and application code are invoked reflectively from the Python code.
“Others” cannot identify which reflective calls may be unsoundly resolved.

However, they may improve soundness by requiring users to annotate the string
arguments of calls to, e.g., Class.forName() and getMethod(), as suggested
in [20]. As shown in Fig. 10, “Others” will require 338 annotations initially and
possibly more in the subsequent iterations (when more code is discovered). As
discussed in Section 2.3, Solar’s annotation approach is also iterative. However,
for these programs, Solar requires only 7 annotations in one iteration.

Solar outperforms “Others” due to its powerful inference system for per-
forming reflection resolution and effective mechanism in identifying unsoundness.



4.4 RQ2: Automatically Identifying “Problematic” Reflective Calls

Solar is unscalable for hsqldb, xalan and checkstyle (under 3 hours). Probe
is then run to identify their “problematic” reflective calls, reporting 13 poten-
tially unsound calls: 1 hsqldb, 12 in xalan and 0 in checkstyle. Their handling
is all unsound by code inspection, highlighting the effectiveness of Solar in pin-
pointing a small number of right parts of the program to improve unsoundness.

In addition, we presently adopt a simple approach to alerting users for poten-
tially imprecisely resolved reflective calls. Probe sorts all the newInstance()

call sites according to the number of objects lazily created at the cast operations
operating on the result of a newInstance() call (by [L-Cast]) in non-increasing
order. In addition, Probe ranks the remaining reflective call sites according to
the number of reflective targets resolved, also in non-increasing order.

By focusing on unsoundly and imprecisely resolved reflective calls (as opposed
to input strings), only lightweight annotations are needed as shown in Fig. 10,
with 2 in hsqldb, 2 in xalan and 3 in checkstyle, as explained below.

4.4.1 hsqldb Fig. 11 shows the unsound and imprecise lists automatically
generated by Probe, together with the suggested annotation points (found by
tracing value flow). All the call sites to the same method are numbered from 0.

Unsound List:
org.hsqldb.Function:getValue/invoke/1

org.hsqldb.Function:<init>/getMethods/0
org.hsqldb.Function:<init>/forName/0

org.hsqldb.Function:getValue/invoke/1
org.hsqldb.Function:<init>/getMethods/0
Targets: 244

java.io.ObjectStreamClass.newInstance
                              /Constructor.newInstance/0

java.io.ObjectInputStream.resolveClass

java.io.Serializable: 1391
 10 items in total 

/forName/0

… …  … …  

Imprecise List:
newInstance (Type Casting)

 Other Side-Effect Methods 

147 Function (    ) {

343 Objecct getValue(…) {

mtd.invoke(null, arg); }
… …  

    c = Class.forName(cn);
…  

…  
    Method[] mtds = 

                     c.getMethods();

    for(;i<mtds.length;i++) {
…  

        Method m = mtds[i];
       if(m.getName().

            mtd = m;
…  

Class: org.hsqldb.Function

185

352
…  

169

179

181
182
184

equals(mn) && …)

186

Fig. 11. Probing hsqldb.

The unsound list contains one
invoke(), with its relevant code con-
tained in class org.hsqldb.Function
as shown. After Probe has finished,
mtd in line 352 points to a Method

metaobject muu that is initially created
in line 179 and later flows into line
182, indicating that the class type of
muu is unknown since cn in line 169 is
unknown. By inspecting the code, we

find that cn can only be java.lang.Math or org.hsqldb.Library, read from
some hash maps or obtained by string manipulations. So it has been annotated
this way afterwards. The imprecise list for hsqldb is divided into two sections. In
“newInstance (Type Casting)”, there are 10 listed cast operations pT q reached by
an oui object such that the number of types inferred from T is larger than 10. The
top cast java.io.Serializable has 1391 subtypes and is marked to be reached
by a newInstance() call site in java.io.ObjectStreamClass. However, this is a
false positive for the harness used due to imprecision in pointer analysis. Thus, we
have annotated its corresponding forName() call site in method resolveClass

of class java.io.ObjectInputStream to return nothing. With the two annota-
tions, Solar terminates in 45 minutes with its unsound list being empty.

4.4.2 xalan Probe reports 12 unsoundly resolved invoke() calls. All Method
objects flowing into these call sites are created at two getMethods() call sites
in class extensions.MethodResolver. By inspecting the code, we find that the
string arguments for the two getMethods() calls and their corresponding entry



methods are all read from a file with its name hard-wired as xmlspec.xsl in
this benchmark. For this particular input file provided by DaCapo, these two
calls are never executed and thus annotated to be disregarded. With these two
annotations, Solar terminates in 28 minutes with its unsound list being empty.

4.4.3 checkstyle Probe reports no unsoundly resolved call. To see why So-
lar is unscalable, we examine one invoke() call in line 1773 of Fig. 12 found
automatically by Probe that stands out as being possibly imprecisely resolved.

Class: org.apache.commons.beanutils.PropertyUtilsBean
921 PropertyDescriptor[] getPropertyDescriptors(Object b) { 
926     return getPropertyDescriptors(b.getClass());             }

Class: java.beans.Introspector.getPublicDeclaredMethods
1275 Method[] getPublicDeclaredMethods(Class clz) { 
1294     return clz.getMethods();

Class: org.apache.commons.beanutils.PropertyUtilsBean
1764 Object invokeMethod(Method m, Object o, Object[] v) { 
1773     return m.invoke(o, v);

<Entry>

<Member-Introspecting>

<Side-Effect>

[Annotation Point]

[Imprecise Location]

}

}

Fig. 12. Probing checkstyle.

There are 962 target meth-
ods inferred at this call site.
Probe highlights its correspond-
ing member-introspecting method
clz.getMethods() (in line 1294)
and its entry methods (with one
of these being shown in line 926).
Based on this, we find easily by code
inspection that the target methods
called reflectively at the invoke()

call are the setters whose names
share the prefix “set”. As a result, the clz.getMethods() call is annotated
to return 158 “setX” methods in all the subclasses of AutomaticBean.

In addition, the Method objects created at one getMethods() call and one
getDeclaredMethods() call in class *.beanutils.MappedPropertyDescriptor$1
flow into the invoke() call in line 1773 as false positives due to imprecision in
the pointer analysis. These Method objects have been annotated away.

After the three annotations, Solar is scalable, terminating in 38 minutes.
Given the same annotations, existing reflection analyses [5, 17, 20, 21] still

cannot handle the invoke() call in line 1773 soundly, because its argument o

points to the objects that are initially created at a newInstance() call and then
flow into a non-post-dominating cast operation (like the one in line 12 Fig. 1).
However, Solar has handled this invoke() call soundly by using LHM, high-
lighting once again the importance of collective inference in reflection analysis.

4.5 RQ3: Recall and Precision

To compare the effectiveness of Doop, Elf and Solar as under-approximate
reflection analyses, it is the most relevant to compare their recall, measured by
the number of true reflective targets discovered at reflective call sites that are
dynamically executed under certain inputs. In addition, we also compare their
(static) analysis precision with two clients, but the results must be looked at
with one caveat. Existing reflection analyses can happen to be “precise” due to
their highly under-approximated handling of reflection. Therefore, our precision
results are presented to show that Solar exhibits nearly the same precision as
prior work despite its significantly improved recall achieved for real code.

Unlike Doop and Elf, Solar can automatically identify “problematic” re-
flective calls for lightweight annotations. To ensure a fair comparison, the three
annotated programs shown in Fig. 10 are used by all the three analyses.



4.5.1 Recall We use TamiFlex [22] to find the targets accessed at reflective
calls in our programs under the inputs described in Section 4.2. Solar is the
only one to achieve total recall for all reflective targets accessed.
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Fig. 13. More true caller-callee relations
found in recall by Solar than Elf (Solar´
Elf) and by Elf than Doop (Elf´Doop).

Here, we demonstrate one signifi-
cant benefit of achieving higher re-
call, in practice. Fig. 13 compares
Doop, Elf and Solar in terms
of true caller-callee relations stati-
cally calculated and obtained by an
instrumental tool written in terms
of Javassist [26]. Solar recalls
a total of 371% (148%) more tar-
gets than Doop (Elf) at the calls
to newInstance() and invoke(),
translating into 49700 (40570) more

true caller-callee relations found for the 10 programs. These numbers are ex-
pected to improve when more inputs are used. Note that all targets recalled by
Doop are recalled by Elf and all targets recalled by Elf are recalled by Solar.
These results demonstrate the effectiveness of our LHM and collective inference.

Table 1. Precision comparison. There are two clients: DevirCall denotes the percentage
of the virtual calls whose targets can be disambiguated and SafeCast denotes the
percentage of the casts that can be statically shown to be safe.

chart eclipse fop hsqldb pmd xalan avrora checkstyle findbugs freecs Average
Devir Doop – 94.94 93.04 – 92.65 93.49 94.79 93.16 92.32 95.46 93.72
Call Elf 93.53 88.07 92.34 94.80 92.87 92.70 94.50 93.19 92.53 94.94 92.93
(%) Solar 93.51 87.69 92.26 94.51 92.39 92.65 92.43 93.39 92.37 95.26 92.63
Safe Doop – 59.34 53.68 – 45.40 57.97 56.12 50.19 45.78 59.71 53.24
Cast Elf 49.80 40.71 55.40 53.65 48.24 59.24 57.27 51.79 48.54 59.14 52.07
(%) Solar 49.53 38.04 54.21 53.11 44.53 59.11 52.56 49.40 43.60 57.96 49.79

4.5.2 Precision Tables 1 compares the precision of Doop, Elf and Solar
with two popular clients. Note that Doop is unscalable for chart and hsqldb

(under 3 hours) in our setting. Despite achieving better recall (Fig. 13), Solar
maintains nearly the same precision as Doop and Elf, which tend to be more
under-approximate than Solar. This suggests that Solar’s soundness-guided
design is effective in balancing soundness, precision and scalability.

4.6 RQ4: Efficiency

Table 2 compares the analysis times of Doop, Elf and Solar. Despite pro-
ducing significantly better under-approximations than Doop and Elf, Solar
is only several-fold slower. When analysing hsqldb, xalan and checkstyle, So-
lar requires some lightweight annotations. Their analysis times are the ones
consumed by Solar on analysing the annotated programs. Note that these an-
notated programs are also used by Doop and Elf (as discussed earlier).

5 Related Work
In addition to the prior work already discussed in Section 2.2, we highlight
below a few open-source static reflection analysis tools available. bddbddb [2]
represents a partial implementation of the reflection analysis introduced in [20].



Table 2. Efficiency comparison (secs).
chart eclipse fop hsqldb pmd xalan avrora checkstyle findbugs freecs Average

Doop – 321 779 – 226 254 188 256 718 422 –
Elf 3434 5496 2821 1765 1363 1432 932 1463 2281 1259 1930

Solar 4543 10743 4303 2695 2156 1701 3551 2256 8489 2880 3638

Doop [5, 18] is a pointer analysis framework for Java programs written in
Datalog. Its reflection handling was similar to the reflection analysis in [20] ex-
cept that it is done context-sensitively. Doop can now accept the analysis results
of TamiFlex [22] on a program while analyzing the placeholder library generated
by Averroes [27], which presently models only newInstance() and invoke().

Elf [21] represents a recent reflection analysis, implemented in Doop, for
Java, by leveraging a so-called self-inferencing property inherent in a program.
However, Elf opts to trade soundness for precision by inferring a target at a
reflective call if and only if both its signature and declaring class can be in-
ferred. Building on this, Solar advocates collective inference to improve and
even achieve soundness under Assumptions 1 – 4, facilitated by lazy heap mod-
eling for reflective object creation. Solar benefits greatly from the open-source
code of Elf and Doop. However, to the best of our knowledge, Solar is the
most comprehensive analysis in handling the Java reflection API.

Wala [17] provides static analysis capabilities for Java and other languages
like JavaScript. Its reflection handling is similar to [20] (by resolving values of
string arguments of reflective calls) but does not handle Field-related methods.

6 Conclusion

Achieving soundness in reflection analysis can improve the effectiveness of many
clients such as program verifiers, compilers, bug detectors and security analyzers.
However, reflection is very challenging to analyze effectively, particularly for
reflection-heavy applications. In this paper, we make one significant step forward
by introducing a new reflection analysis that can reason about its soundness
when certain assumptions are met and produce significantly improved under-
approximations than prior art otherwise. We hope that our framework (www.
cse.unsw.edu.au/~corg/solar) will be useful in future research.
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