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Abstract—Reflection, which is widely used in practice and
abused by many security exploits, poses a significant obstacle
to program analysis. Reflective calls can be analyzed statically
or dynamically. Static analysis is more sound but also more
imprecise (by introducing many false reflective targets and thus
affecting its scalability). Dynamic analysis can be precise but
often miss many true reflective targets due to low code coverage.

We introduce MIRROR, the first automatic reflection analysis
for Java that increases significantly the code coverage of dynamic
analysis while keeping false reflective targets low. In its static
analysis, a novel reflection-oriented slicing technique is applied to
identify a small number of small path-based slices for a reflective
call so that different reflective targets are likely exercised along
these different paths. This preserves the soundness of pure static
reflection analysis as much as possible, improves its scalability,
and reduces substantially its false positive rate. In its dynamic
analysis, these slices are executed with automatically generated
test cases to report the reflective targets accessed. This signifi-
cantly improves the code coverage of pure dynamic analysis. We
evaluate MIRROR against a state-of-the-art dynamic reflection
analysis tool, TAMIFLEX, by using 10 large real-world Java
applications. MIRROR detects 12.5% – 933.3% more reflective
targets efficiently (in 362.8 seconds on average) without producing
any false positives. These new targets enable 5 – 174949 call-
graph edges to be reachable in the application code.

I. INTRODUCTION

As one of the most widely adopted programming lan-

guages [1], Java has been a popular attack target. Java suffers

still from serious security issues, with 87% of attack vectors

for web exploits in 2013 [2] and 91% in 2014 [3]. A large

variety of exploited vulnerabilities are related to reflection, a

dynamic feature widely used in Java applications to enable

their runtime behaviors to be examined or modified at run-

time, which is abused by 45% of all exploits in the wild [4].

In practice, program analysis tools are invaluable for ensur-

ing software quality and reliability. However, “you can’t check

code you don’t see” [5]. Without analyzing reflection, bug

detectors and security analysers may miss important program

behaviors, because these tools do not have a complete view

of the code (as many reflectively induced call-graph edges are

missing). Therefore, reflection poses a major obstacle to bug

detection and security analysis [6]–[9].

Reflective calls can be analyzed either statically or dy-

namically. Static analysis [6], [7], [10]–[15], which discovers

reflective targets accessed at reflective calls via type inference,

is often imprecise by reporting many false targets (and con-

sequently, impairing scalability for some large applications).

In contrast, dynamic analysis [16], [17], which instruments

and records reflective targets accessed at reflective calls during

program execution, can be both precise and efficient. As a

result, bug detectors on finding, for example, data races [18],

deadlocks [19] and property violations [20]), and security anal-

ysers on finding, for example, privacy leaks [21] and malicious

functionalities [22], often resort to dynamic reflection analysis.

However, analyzing reflection dynamically often misses many

true reflective targets (due to low code coverage). This is

especially the case when GUI applications are analyzed. For

example, we observe that TAMIFLEX [17], the state-of-the-art

dynamic reflection analysis, fails to find any new reflective

target after a long sequence of GUI operations has been

performed (on, for example, findbugs-1.2.1).

In this paper, we introduce MIRROR, the first automatic

reflection analysis for Java that combines program slicing

(static analysis) and test case generation (dynamic analysis) to

uncover more reflective targets precisely. MIRROR is designed

to assist dynamic reflection analysis (e.g., TAMIFLEX) to

resolve more reflective targets with low false positives. Thus,

MIRROR can discover effectively reflective targets that would

otherwise be missed by TAMIFLEX in real-world applications

and improve the code coverage of dynamic reflection analysis.

In MIRROR, its static analysis applies a novel reflection-

oriented slicing technique to focus on the parts of the program

relevant to a reflective call. Unlike traditional slicing [23], [24],

which hardly scales to large object-oriented programs [25],

[26], MIRROR identifies a small subgraph of the program’s

call graph that likely affects the execution of a reflective call

and then computes a small number of small path-based slices

in the subgraph so that potentially true yet different reflective

targets are likely exercised at the reflective call along these

different paths. This preserves the soundness of pure static

reflection analysis as much as possible, improves its scalability,

and reduces substantially its false positive rate.

In MIRROR, its dynamic analysis executes each path-based

slice with automatically generated test cases to exercise the

path and record the reflective targets accessed. This increases

the code coverage of pure dynamic reflection analysis.

We have evaluated MIRROR against TAMIFLEX [17] by

using a set of 10 large real-world Java programs. MIRROR

detects 12.5% – 933.3% more reflective targets efficiently

(in 362.8 seconds on average) with no false targets. These

new reflective targets result in 5 – 174949 call-graph edges

reachable in the application code of these programs.

With MIRROR, more reflective targets can be found pre-
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cisely and quickly, making many previously missing call-graph

edges visible to a variety of analysis tools. This enables bug

detectors and security analyzers, for example, to identify more

bugs and vulnerabilities effectively.

In summary, this paper makes the following contributions:

• We introduce MIRROR, the first automatic Java reflection

analysis framework that combines static and dynamic

analysis to resolve reflective calls in large codebases.

• We describe a reflection-oriented slicing technique that

improves the scalability of traditional slicing for object-

oriented programs (w.r.t. a reflective call). This technique

is also potentially useful for supporting bug detection,

program understanding, and verification.

• We describe a dynamic analysis technique for resolving

reflective calls by combining automatic test case genera-

tion and program execution on path-based slices.

• We evaluate MIRROR (implemented in 10 KLOC of Java)

by using 10 large real-world Java programs. MIRROR is

critical in enabling their reflective calls to be analyzed

efficiently and precisely with good soundness.

II. A MOTIVATING EXAMPLE

Our motivating example is a Java program given in

Figure 1, which is abstracted from real-world applications

freecs-1.3 and pmd-4.2.5 (used in our evaluation in

Section IV). We focus on resolving the reflective target meth-

ods that may be called at getM.invoke(o, null) in line

42. While MIRROR works on the Jimple IR (Intermediate

Representation) in SOOT [27], we illustrate it by using the

high-level statements in Java in order to ease understanding.

In line 17, a class metaobject pointed to by this.clzObj
is created by calling Class.forName(cName) to rep-

resent the class named by cName. Here, cName is either

“content.HTTPRequest” (line 5) or a non-constant string

read from the command line (line 7). In line 41, an object

o is created reflectively as an instance of this.clzObj.

Then a method object, pointed to by getM, is created

by calling getMethod() in line 37 or 39 to repre-

sent a method from this.clzObj with its name being

“toString” or “getUrl”. In line 42, this method is

called reflectively on the receiver object o with the ac-

tual argument null. There are five potential reflective tar-

gets: getUrl() in class content.HTTPRequest and

the four toString() methods in the four subclasses,

SimpleRenderer, XMLRenderer, CSVRenderer and

VSRenderer, of interface pmd.cpd.Renderer.

A. Existing Approaches

Static analysis [6], [7], [11], [28]–[30] attempts to re-

solve reflective targets of getM.invoke(o, null) in

line 42 by conducting type inference. By keeping track

of string constants, we know that getM represents a

method named toString() (line 37) or getUrl()
(line 39). In addition, as o may be an instance of

class content.HTTPRequest (line 5), toString() and

getUrl() from class content.HTTPRequest are the

1 public class Server {

2 Class clzObj;

3 boolean infoChanged;

4 public static void main(String args[]) {

5 String className = "content.HTTPRequest";

6 if (args.length > 0) {

7 className = args[0];

8 }

9 if (args.length > 5)

10 System.out.println("No config info");

11 Server srv = new Server();

12 srv.changeInfo(className);

13 srv.readConfig();

14 srv.initServer();

15 }

16 public void changeInfo(String cName) {

17 this.clzObj = Class.forName(cName);

18 this.infoChanged = false;

19 }

20 public void readConfig() {

21 loadCommand();

22 this.infoChanged = true;

23 FileMonitor.getFileMonitor().addReloadable(this);

24 }

25 public void initServer() {

26 created();

27 }

28 public void created() {

29 loadCommand();

30 }

31 public void loadCommand() {

32 String cmdStr = null;

33 if (this.infoChanged == false) {

34 Method getM = null;

35 Class clz = this.clzObj;

36 if (pmd.cpd.Renderer.class.isAssignableFrom(clz))

37 getM = clz.getMethod("toString");

38 else if (content.HTTPRequest.class.isAssignableFrom(clz))

39 getM = clz.getMethod("getUrl");

40 else throw new ErrorClassTypeException(...);

41 Object o = clz.newInstance();

42 cmdStr = (String) getM.invoke(o, null);

43 }

44 }

45 }

Fig. 1: A Java program.

two potential targets in line 42. Finally, as o may also be

an instance of any unknown class (line 7), getUrl() or

toString() in any class is also a possible target. Thus,

a dilemma emerges. Including all these targets improves the

soundness of the analysis but introduces many false targets,

making the analysis imprecise or unscalable. Conversely, ig-

noring all these targets may cause some true targets to be

missed. In MIRROR, we avoid this dilemma by reporting only

the reflective targets observed dynamically on the path-based

slices that are statically computed for a given reflective call.

Dynamic analysis [16], [17] instruments and records the

reflective targets invoked by getM.invoke(o, null) in

line 42 during program execution. Unless all test inputs are

exhausted, which is impractical for many applications, espe-

cially GUI applications, some reflective targets will be missed.

For example, pmd-4.2.5, from which our example is partly

abstracted, does not come with any test case for exercising
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Fig. 2: The MIRROR framework for resolving reflective calls by combining static and dynamic analysis.

className (line 7). Therefore, a dynamic analysis tool may

fail to find the four toString() target methods provided in

the four aforementioned subclasses of pmd.cpd.Renderer.

In general, dynamic analysis cannot resolve reflective calls that

are not encountered during program execution. In MIRROR,

however, we can still handle such reflective calls by combining

automatic test case generation and program execution.

B. The MIRROR Approach

Figure 2 gives an overview. Given a Java program, MIRROR

analyzes its reflective calls individually. Below we describe

our approach by focusing on getM.invoke(o, null) in

line 42 of Figure 1. We will highlight the functionalities of

its four stages, with the first two forming the static analysis

phase (“Reflection-Oriented Slicing”) and the last two forming

the dynamic analysis phase (“Reflection Resolution”). We

will also explain some challenges faced, our solutions, the

motivations behind, and the tradeoffs made.

1) Reflection-Oriented Slicing (Static Analysis): As dis-

cussed earlier, pure static reflection analysis may introduce

many false reflective targets, making it unscalable for some

programs. Given a reflective call to resolve, one straightfor-

ward remedy is to restrict the analysis to its backward slice

comprising the statements on which the reflective call data- or

control-depends. Unfortunately, such traditional slicing [23],

[24] does not scale to large object-oriented programs [28],

[31]–[33], as it operates on the entire call graph of the

program. For the reflective call in line 42, its backward slice

consists of all the methods in Figure 1, comprising all the

statements except the three in lines 9, 10 and 23.

Ideally, we would like to find the smallest backward slice for

a reflective call so that its different paths trigger its different

reflective targets. Achieving such soundness and precision

efficiently is too challenging to be practical. In this paper, we

introduce reflection-oriented slicing that strikes a good balance

among efficiency, soundness and precision by leveraging the

following key observation about reflection usage.

Observation 1. Given a reflective call R in the program,
the variables that appear in all the conditionals affecting the
execution of R are usually defined in the same set of methods
that contain the du-chains (i.e., def-use chains) for R.

Let DR be the set of du-pairs (i.e., def-use pairs) of the

form s ⇒ s′, where a variable defined at s is used at s′,

such that these data dependences form the du-chains for R.

In reflection-oriented slicing, we obtain first a subgraph of the

program’s call graph that contains DR (by considering data

dependences) and then a small number of path-based slices for

R on this subgraph (by considering also control dependences).

a) Stage 1. Call Graph Reduction: Instead of operating

on the entire call graph of the program as in traditional slicing

[23], [24], MIRROR restricts itself to a small subgraph.

For the reflective call in line 42, we have:

D42 = {4 ⇒ 7, 7 ⇒ 12, 5 ⇒ 12, 12 ⇒ 17, 17 ⇒ 35, 35 ⇒ 37,

35 ⇒ 39, 35 ⇒ 41, 37 ⇒ 42, 39 ⇒ 42, 41 ⇒ 42} (1)

where each statement is identified by its line number. In

Figure 1, all these statements, which affect the execution

of line 42 in a data-dependent manner, are underlined. The

definition of getM = null in line 34 is disregarded since it

cannot trigger any target at the reflective call in line 42.

Given DR, a subgraph, denoted GR, is built so that, for

every du-chain in DR, GR contains a sequence of method

calls along which the du-chain holds. In our example, its call

graph is given in Figure 3(a) and the subgraph G42 is given

in Figure 3(b).

loadCommand()

changeInfo()

initServer() readConfig()

created()

main() e1

e4

e5
e6

e3

e2

loadCommand()

changeInfo()

readConfig()

main() e1

e3

e2

(a) Entire call graph (b) Subgraph G42

Fig. 3: Call graph reduction for Figure 1.

There can be many such subgraphs to choose from. For

the subgraph in Figure 3(b), replacing its call-graph edges e2
and e3 by e4, e5 and e6 in Figure 3(a) yields another larger

subgraph. We do not aim to find the smallest GR. Instead, we

will build GR by performing BFS in the program’s call graph

in order to keep GR as small as possible, thereby improving

the scalability of the subsequent path-based slicing stage. This

tradeoff may still make call-graph reduction unscalable for

some reflective calls, affecting the soundness of MIRROR (due

to the inherent complexity of slicing, in general).

b) Stage 2. Path-based Slicing: For a reflective call R,

its different targets may be defined along different paths. We
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are therefore motivated to partition DR into different du-chain

groups so that one group contains exactly one definition for

every variable used at R. Clearly, all the paths that contain the

same du-chains for R must trigger the same set of reflective

targets at R. Therefore, only one representative path needs to

be selected for each du-chain group. As the partition obtained

statically this way is not guaranteed to be the coarsest at run

time, different du-chain groups may still trigger the same set

of reflective targets at R.

A 4 7 12 17 35
37
41

42

B 4 7 12 17 35
39
41

42

C 5 12 35
39

41
4217

5 12 35
37

41
425D 17

Fig. 4: Partitioning of D42 into du-chain groups.

Figure 4 gives a partition of D42 in Equation (1) into four

du-chain groups, A, B, C and D. Note that 5 ⇒ 12 and

7 ⇒ 12 cannot appear in the same group since className is

defined in lines 5 and 7 but used in line 12. Similarly, 37 ⇒ 42
and 39 ⇒ 42 cannot appear in the same group since getM is

defined in lines 37 and 39 but used in line 42.

Given a du-chain group XR of DR, we will find a represen-

tative path that contains all the du-pairs in XR such that for

every s1 ⇒ s2 ∈ XR, if s′1 ⇒ s2 ∈ DR\XR, then s′1 will not

appear on the path. This ensures that s1 is the only definition

for s2 on this path. We will achieve this by performing BFS

on the ICFG (inter-procedural Control Flow Graph) of the

program restricted to GR. If such a path does not exist, XR
is ignored. This can happen when XR contains two du-pairs

that appear in two mutually exclusive branches and thus cannot

hold simultaneously during program execution.

4, 6-9, 11, 12, 17, 18, 13, 21, 32-37, 41, 42
4, 6-9, 11, 12, 17, 18, 13, 21, 32-36, 38, 39, 41, 42
4-6, 9, 11, 12, 17, 18, 13, 21, 32-36, 38, 39, 41, 42
4-6, 9, 11, 12, 17, 18, 13, 21, 32-37, 41, 42

A
B
C
D

Fig. 5: Representative paths for the du-chain groups in Fig-

ure 4.

Figure 5 gives the representative paths found for the four

du-chain groups in Figure 4. In each case, there are two paths

due to line 9. The shorter one that contains no statements in

the if branch in lines 9 – 10 is selected. Note that for the

du-chain groups C and D in Figure 4, with each containing

the definition of className in line 5, the other definition

of className in line 7 is skipped. Thus, the else branch of

the if statement in lines 9 – 10 will be followed.

Finally, for each representative path selected for a du-chain

group XR partitioned from DR, we obtain a path-based slice

by applying traditional slicing [23], [24] to R. However,

we only consider the data and control dependences for the

statements on the path and restrict the slice to GR.

BB
A

C
D

4, 6-8, 9, 11, 12, 13, 17, 18, 21, 22, 32, 33, 34, 35-37, 41, 42

4, 6-8, 9, 11, 12, 13, 17, 18, 21, 22, 32, 33, 34, 35, 36, 38, 39, 41, 42

4, 5, 6, 9, 11, 12, 13, 17, 18, 21, 22, 32, 33, 34, 35, 36, 38, 39, 41, 42

4, 5, 6, 9, 11, 12, 13, 17, 18, 21, 22, 32, 33, 34, 35-37, 41, 42

Fig. 6: Path-based slices for the paths in Figure 5.

Figure 6 gives the slices found for the four representative

paths in Figure 5. For each path, the statements on the path that

are irrelevant to line 42 with respect to this path are crossed

out. In addition, line 22 is the only (new) statement added.

2) Reflection Resolution (Dynamic Analysis): For each

path-based slice obtained for R, we generate its test cases and

discover its reflective targets at R by instrumented execution.

a) Stage 3. Automatic Test Case Generation: Each

path-based slice has only one execution path. As in sym-

bolic execution [34]–[38], a path condition is collected that

comprises all the constraints affecting the execution of the

path. However, unlike the prior work, MIRROR models a

variety of object-oriented features such as instanceof,

isAssignableFrom and type casts in order to generate

test cases more comprehensively. In general, we will generate

a set of different test inputs that satisfy the path condition so

that different reflective targeted can be captured.

BB

A

D

Args[] ∈ {{“pmd.cpd.SimpleRendererer”}, {“pmd.cpd.XMLRendererer”},

Args[] = {“content.HTTPRequest”}

Infeasible pathD
C No input needed

{“pmd.cpd.CSVRendererer”}, {“pmd.cpd.VSRendererer”}}

Fig. 7: Test inputs generated for the slices in Figure 6.

Figure 7 give the test inputs generated. For slice A, four test

cases for Args[0] at line 4 are generated due to pmd.cpd.
Renderer.class.isAssignableFrom(clz) in its

path condition. Here, SimpleRenderer, XMLRenderer, C
SVRenderer and VSRenderer are the four subclasses of

interface pmd.cpd.Renderer. For slice B, one test case is

generated for Args[0] at line 4 due to content.HTTPRe
quest.class.isAssignableFrom(clz). For slice C,

no input is needed as all variables are well initialized. For slice

D, its path is infeasible due to two inconsistent constraints,

className="content.HTTPRequest" and pmd.cpd
.Renderer.class.isAssignableFrom(clz).

Let us now examine the implications of Observation 1

on the precision of MIRROR. If a conditional, say, x ==
0 that affects the execution of R involves a definition of
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x outside GR, then MIRROR will generate a value of x so

that x == 0 holds. If this conditional never evaluates to true

during program execution, then MIRROR may report some

false reflective targets along this path. This has never happened

to a set of 10 large Java programs evaluated, indicating that

Observation 1 usually holds in real-world applications.

b) Stage 4. Instrumented Execution: For each path-

based slice obtained for R, we generate an executable program

by adding some missing variable declarations. For example,

every slice in Figure 6 misses the declaration for getM. We

then execute each slice with its test cases generated earlier to

resolve the reflective targets at R along its associated path.

Let us consider the reflective call in line 42. For slice A,

the four toString() target methods in the four subclasses,

SimpleRenderer, XMLRenderer, CSVRenderer and

VSRenderer, of interface pmd.cpd.Renderer are found.

For slice B, content.HTTPRequest.getUrl() is dis-

covered. For the slice C, this same target is found.

III. THE MIRROR ALGORITHMS

We describe the algorithms for realizing the four compo-

nents in MIRROR (Figure 2). MIRROR operates on the ICFG

of the program expressed in a three-address IR, by making use

of the program’s call graph G and def-use chains available.

Given a program, MIRROR analyzes the reflective calls

reachable from its main() individually. For a given reflective

call R, DR represents the set of du-chains for R. Our call-

graph reduction algorithm will reduce G to a substantially

smaller subgraph GR that contains a sequence of method calls

to establish every du-chain in DR. Our path-based slicing

algorithm will build a small number of small path-based slices

on GR with its paths leading potentially to all the possible

targets accessed at R. Our automatic test case generator

generates the test cases for exercising a (feasible) path-based

slice. Finally, our instrumentator instruments and executes a

given slice to report the reflective targets accessed at R.

A. Call Graph Reduction

Given a reflective call R, we will reduce the program’s call

graph G to a subgraph GR, which is substantially smaller

but still allows every du-chain in DR to hold. Thus, GR
suffices to trigger all the possible reflective targets at R while

keeping the number of false targets reported to a minimum

due to Observation 1. This also enables MIRROR to perform

its subsequent reflection-oriented slicing on a small sub-

call graph, thereby improving the scalability of traditional

slicing (especially for large object-oriented programs), which

is performed on the entire call graph of the program instead.

We will build GR so that for every du-chain in DR, GR
contains a sequence of method calls for the du-chain to hold.

It suffices to consider only the interprocedural du-pairs (i.e.,

the du-pairs spanning two different methods) in DR, since the

resulting GR will naturally include all the intraprocedural du-

pairs in DR. To construct GR, we grow it incrementally by

processing all the interprocedural du-pairs in turn. Therefore,

how to find a sub-call graph to establish one interprocedural

du-pair s1 ⇒ s2 is central to our algorithm. To this end, we

make use of the following two functions:

• Connect(s1, s2) returns a sub-call graph so that s1 ⇒ s2.

• Common(s1, s2) returns a statement reaching s1 and s2.

There are three types of interprocedural du-pairs. We discuss

how to build the two functions, as illustrated in Figure 8.

a(){

s1:
}

b(y);

e1

b(z){

s2:
}

x= z;

b(){

s2:
}

x = a();

a(){
s1:
}

e1

returny;

(a) Parameter passing (b) Value returning

c(){
s3:
s4:

a();
b();

}

b(){

s2:
}

… =

e2

q.f;

a(){

s1:
}

p.f=…;
e1

(c) Field access

Fig. 8: Building Connect(s1, s2) and Common(s1, s2) for three

types of interprocedural du-pairs s1 ⇒ s2.

(1) Parameter Passing (Figure 8(a)). s1 ⇒ s2 denotes a

parameter-passing dependence, where s1 is a call state-

ment in method a() that passes an argument used at s2 in

method b(). As a result, Connect(s1, s2) = {a() → b()}
and Common(s1, s2) = s1.

(2) Return value (Figure 8(b)) s1 ⇒ s2 denotes a value-

returning dependence, where s2 is a call statement in

method b() that receives a value returned from s1 in

method a(). Thus, Connect(s1, s2) = {a() → b()} and

Common(s1, s2) = s2.

(3) Field Access (Figure 8(c)) s1 ⇒ s2 denotes a field-

related dependence, where s1 is a store p.f = · · · in

method a() and s2 is a load · · · = q.f in method b().
Here, p.f and q.f are aliases as p and q may point to

a common object. This also includes the special cases

when s1 appears directly in c() (as if the call to a() at

s3 is inlined) and/or when s2 appears directly in c() (as

if the call to b() at s4 is inlined).

We compute Connect(s1, s2) by performing BFS on the

program’s call graph G backwards, starting from the use

s2. We will stop at the first method m such that

1) m is a direct or indirect caller of b() or contains s2 (as

is the case when s4 is replaced by s2), and
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2) m is a direct or indirect caller of a() or contains s1
(as is the case when s3 is replaced by s1).

Then Connect(s1, s2) comprises the two call-chains, one

from m to b() and one from m to a(), both computed

by BFS. In Figure 8(c), m is found to be c(). So

Connect(s1, s2) = {c() → a(), c() → b()}.

Common(s1, s2) is s1 if m contains s1 or is the call

statement in m that calls (directly or indirectly) a method

that contains s1. In Figure 8(c), Common(s1, s2) = s3.

(If we modify the example by replacing s3 by s1, then

Common(s1, s2) = s1.)

In theory, Connect(s1, s2) is not the smallest. In practice,

however, Connect(s1, s2) is nearly so due to BFS used, as all

the reflection-related statements are typically used together.

Algorithm 1: Call Graph Reduction.

Input : A reflective call site R
Output: GR

1 Function BuildSubgraph()
2 GR := {the method containing R};

3 foreach s1 ⇒ s2 ∈ DR do
4 visited(s1 ⇒ s2) := false;

5 foreach s ⇒ R ∈ DR do
6 RECBUILD(⊥, s ⇒ R);
7 return GR
8 Procedure RECBUILD(u, s1 ⇒ s2)
9 visited(s1 ⇒ s2) := true;

10 if s1 ⇒ s2 spans two distinct methods then
11 if u == ⊥ then u := s2;

12 Gs1⇒u = Connect(s1, u);
13 GR = GR ∪Gs1⇒u;

14 cs1⇒u = Common(s1, u);
15 foreach s3 ⇒ s1 ∈ DR do
16 if !visited(s3 ⇒ s1) then
17 RECBUILD(cs1⇒u, s3 ⇒ s1);
18 return;

Let us now describe BuildSubGraph(), in Algorithm 1, that

builds GR for a reflective call R. We tag a du-pair as visited
in the standard manner to deal with dependence cycles. One

simple-minded but incorrect approach would compute:

Gerr
R =

⋃

s1⇒s2∈DR is interprocedural

Connect(s1, s2) (2)

While Gerr
R contains the statements in DR, some du-chains

may no longer be preserved, as some caller-callee relations

are missing. Consider Figure 9. The program’s call graph

is given in Figure 9(a), where s4 symbolizes R. Suppose

DR = {s1 ⇒ s2, s2 ⇒ s3, s3 ⇒ s4}. For the du-chain s1 ⇒
s2 ⇒ s3 ⇒ s4, s1 ⇒ s2 and s3 ⇒ s4 are interprocedural and

s2 ⇒ s3 is intraprocedural. Due to the recursive nature of our

algorithm, it suffices to use this du-chain to explain how our

algorithm works and argue for its correctness.

Gerr
R = Connect(s1, s2)∪Connect(s3, s4) = {e2, e5}∪{e4}

given in Figure 9(b) is incorrect. As e() cannot reach c() in

d(){
s5:
s6:

a();
c();

}

a(){
s1:p.f

}
= …;

c(){

s4: b();

}

b(){
s2:
s3:

y
return

}

= q.f;x = y;

e1 e2

e3 e5

e4

e(){
s7:
s8:

a();
b();

}

main(){
s9:
s10:

d();
e();

}

e6 e7

(a) Call graph

c()

e2

e5

e4
b()

a()

e()

c()
e4

b()

a()

d()

e3

e1

(b) Incorrect Gerr
R (c) GR

Fig. 9: Construction of incorrect and correct GR.

Gerr
R , Gerr

R does not contain a sequence of method calls that

allows the du-chain s1 ⇒ s2 ⇒ s3 ⇒ s4 to be established.

Figure 9(c) gives the subgraph GR constructed by our

algorithm. We first compute Gs3⇒s4 = Connect(s3, s4) =
{e4} and cs3⇒s4 = Common(s3, s4) = s4. We then com-

pute Gs1⇒s4 = Connect(s1, s4) = {e1, e3} and cs1⇒s4 =
Common(s1, s4) = s5. By construction, the following two

facts are true. (1) In Gs3⇒s4 , s4 reaches the method b() that

contains s3. (2) In Gs1⇒s4 , s1 can reach s4. As s2 ⇒ s3 is

intraprocedural, s2 and s3 reside in the same method. Thus,

in GR, s1 can reach b() that contains also s2. By computing

Connect(s1, s4) instead of Connect(s1, s2), s1 ⇒ s2 is also

respected. As shown, d() can trigger a sequence of method

calls, s5 : a(), s6 : c() and s4 : x = b(), so that the du-chain

s1 ⇒ s2 ⇒ s3 ⇒ s4 holds.

Example 1. D42 is given in Equation (1), which contains two
interprocedural du-pairs, 12 ⇒ 17 and 17 ⇒ 35. By apply-
ing Algorithm 1, we obtain Connect(17, 35) = {e1, e2, e3}
and Common(17, 35) = {12}. Finally, Connect(17, 35) =
{e1, e2, e3} is the subgraph GR obtained in Figure 3.

B. Path-based Slicing

Given DR that contains the du-chains for a reflective call

R, we generate its path-based slices in three steps.

1) Partitioning DR: We partition DR into du-chain groups

so that in one group, every variable has exactly one definition,
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starting from the variables used at R. This can be done easily

by traversing the du-chains backwards from R by separating

multiple definitions of a variable in different groups.

Example 2. For the reflective call at line 42 in Figure 1, D42

in Equation (1) is partitioned into the four du-chain groups
given in Figure 4, where each variable has one definition.

2) Finding Representative Paths: For a given du-chain

group XR partitioned from DR, all the paths sharing XR
will cause the same set of reflective targets to be accessed

at R. Thus, it suffices to consider just one of these paths. In

MIRROR, we will find one representative path PXR for XR in

the program’s ICFG restricted GR, which is a small subgraph

of the program’s call graph found in call graph reduction, by

performing BFS, starting from R. PXR is a path-specific to

XR. For every statement in XR, the path includes only its

definition in XR but excludes its other definitions that appear

in the other du-chain groups.

We can find PXR by applying SelectPath() in Algorithm 2.

The basic idea is simple. During BFS, the shortest path ps
from R to any statement s visited in the program’s ICFG

restricted to GR (line 21) is maintained (line 10). If PXR is

found (lines 11 – 14), then we are done. If the statements in

XR that are not yet encountered cannot reach s, we give up

this path (lines 15 – 17). If s ⇒ u ∈ DR \XR is downward-

exposed for a statement u in ps, then we are traversing along a

wrong direction (lines 18 – 20), since PXR must include only

the single definition of u in XR rather than DR \XR. In lines

21 – 23, we perform our traversal in BFS, by avoiding visiting

control-flow cycles repeatedly. In line 21, pred represents the

standard predecessor function for a directed graph. Finally, in

line 5, we remove non-downward-exposed definitions, which

are in DR \XR, as they are redundant (as illustrated below).

Example 3. For the four du-chain groups in Figure 4, we can
apply SelectPath to find their representative paths in Figure 5.
Let us consider the du-chain group A. Consider the code in
Figure 1. For getM used in line 42, its definition is given in
line 37. For className used in line 12, its definition is given
in line 7. When constructing its representative path starting
from line 42, we will not include line 39, since this will make
the definition of getM in line 39 downward-exposed (to line
42). Towards the end of the BFS traversal, line 5 in Figure 1
will be visited. The representative path built so far is “6 – 9,
11, 12, 17, 18, 13, 21, 32 – 37, 41, 42”. As the definition of
className in line 7 is already included, the other definition
className in line 5 is initially included by RECSELECT but
removed in SelectPath since its not downward-exposed, i.e.,
redundant. Thus, the final path found is “4, 6 – 9, 11, 12, 17,
18, 13, 21, 32 – 37, 41, 42”.

3) Generating Path-based Slices: For each representative

path found for a reflective call R, we apply traditional slicing

[23], [24] to compute a backward slice from R. However,

only the data and control dependences for the statements in

this path are considered, with the slice restricted to GR only.

Algorithm 2: Representative Path Selection.

Input : A du-chain group XR for R
Output: A representative path PXR for XR

1 Function SelectPath()
2 PXR = ∅;

3 Enqueue(Q,R);
4 RECSELECT();
5 Remove all non-downwards-exposed definitions in

PXR ;

6 return PXR ;

7 Procedure RECSELECT()
8 while Q �= ∅ do
9 s = Dequeue(Q)

10 Let ps be the (BFS) path maintained for s;

11 if ps contains all statements in XR then
12 PXR = ps;

13 Q = ∅;

14 return;

15 Let T be the set of statements in XR but not in

ps;

16 if ∃ t ∈ T : t does not reach s then
17 return;

18 if ∃ u ∈ ps : s ⇒ u ∈ DR \XR then
19 if � s′ ∈ ps : s

′ ⇒ u ∈ XR then
20 return;

21 foreach s′ ∈ pred(s) in the ICFG restricted to
GR do

22 if s′ was not previously enqueued then
23 Enqueue(Q, s′)
24 RECSELECT();

25 return;

Example 4. For the four representative paths in Figure 5, their
corresponding path-based slices are given in Figure 6.

C. Automatic Test Case Generation

Each path-based slice exhibits one single path. A path

condition that consists of all the constraints governing the

execution of the path is collected and solved to find all the

test inputs for exercising the path. There are some SMT

solvers around [39]–[41]. However, we have written one

ourselves in order to handle a variety of object-oriented

constraints more comprehensively, including instanceof,

isAssignableFrom, and type casts.

Example 5. For the four path-based slices generated in
Figure 6, their corresponding test cases are given in Figure 7.
For the path-based slice named A, some path constraints are
args.length > 0, className = args[0] (an assig
nment) , this.infoChanged = false (an assignment),
this.infoChanged == false, and pmd.cpd.Rende
rer.class.isAssignableFrom(clz). Solving this
path condition yields the four test inputs given in Figure 7.
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D. Instrumented Execution

For each path-based slice generated for a du-chain group

XR, we will create an executable program by adding some

missing declaration statements to the slice. In addition, we

will synthesize a pseudo main() method to call all the source

methods (with no predecessors) in GR. By construction, for

every du-chain in XR, its path-based slice always contains a

source method that can make a sequence of method calls so

that the du-chain holds (Section III-A).

In Figure 9, the pseudo main() synthesized will call d(),
since d() reaches the other three methods a(), c() and b(), so

that the du-chain s1 ⇒ s2 ⇒ s3 ⇒ s4 will be established.

Example 6. For the four path-based slices in Figure 6, the
pseudo main() is simply set as the original main(), which
happens to be the only source node in G42 (Figure 3). The
declaration statements such as the ones for className and
getM will be added in the final executables generated.

IV. EVALUATION

Our evaluation addresses three research questions:

• RQ1. Can MIRROR assist TAMIFLEX [17], a state-of-the-

art dynamic reflection analysis tool, to resolve more (true)

reflective targets in real-world applications efficiently and

precisely while maintaining a good degree of soundness?

• RQ2. Is MIRROR’s reflection-oriented slicing capable of

avoiding many irrelevant methods (statements) introduced

by traditional slicing and including only the relevant

reflection-related methods (statements)?

• RQ3. Can MIRROR’s reflection resolution solve path con-

ditions effectively during automatic test case generation?

a) Implementation: We have implemented MIRROR in

SOOT [27], a static analysis framework for Java, in 10 KLOC

of Java code. Our analysis operates on the ICFG of the

program expressed in the Jimple IR constructed by SOOT with

its demand-driven context-sensitive pointer analysis. We make

use of the program’s call graph and def-use chains built this

way. For each sliced program, we transform it into a jar file

and report the reflective targets detected under the test inputs

automatically generated by MIRROR.

b) Benchmarks: We consider a set of 10 large, widely-

used open-source Java applications evaluated under a large

Java library, JDK 1.6.0 45, and test each with 8GB heap space.

As shown in Table I, our 10 open-source programs are

selected from a wide range of application areas: batik1.7
(a SVG toolkit), findbugs-1.2.1 (a bug detector),

freecs1.3 (a chat server), gruntspud-0.4.6-beta
(a graphical CVS client), h2-1.3.172 (a database man-

agement system), jEdit-5.1.0 (a software text editor),

jfreechart-1.0.19 (a chart library), jftp-1.6 (a net-

work browser), pmd-4.2.5 (a source code analyzer), and

xalan-2.4.1 (a XSLT processor).

For each program, we list the number of classes,

methods and Jimple statements reported by SOOT that

are reachable from its main() in both the appli-

cation and library code. We will focus on analyz-

ing Class.newInstance(), Method.invoke() and

Constructor.newInstance(), the three widely used

Java reflection API in the application code of a program.

TABLE I: Program characteristics

Program #Classes #Methods #Statements

batik1.7 5148 32347 581106
findbugs-1.2.1 4692 28857 472647
freecs1.3 3714 24000 418731
gruntspud-0.4.6-beta 4945 31684 527433
h2-1.3.172 4139 30208 518189
jEdit-5.1.0 5135 34402 586647
jfreechart-1.0.19 4511 30596 534615
jftp-1.6 5208 35739 659927
pmd-4.2.5 3936 25068 422054
xalan-2.4.1 3483 21755 373008

Total 44911 294656 5094357

c) Computing Platform: Our plaform is an Intel i5-

4570 3.20 GHz machine (running Windows 7) with 16GB of

RAM. The analysis time of a program is the average of 5 runs.

A. RQ1: Reflection Analysis

Table II contains our main results. MIRROR can assist

a state-of-the-art dynamic reflection analysis tool, TAMI-

FLEX [17], to find significantly more reflective calls and (true)

reflective targets in real-world applications efficiently. For the

10 programs evaluated, MIRROR reports no false reflective

targets, demonstrating also the validity of Observation 1.

TABLE II: Comparing MIRROR and TAMIFLEX in terms of

reflective calls and (true) reflective targets found.

Program
TAMIFLEX MIRROR TAMIFLEX ∩ MIRROR

#Ref Calls #Targets #Ref Calls #Targets #Ref Calls #Targets

batik 3 4 1 6 1 1
findbugs 3 3 3 4 2 2
freecs 6 6 6 59 3 3
gruntspud 5 8 7 7 2 2
h2 7 19 10 18 4 12
jEdit 4 40 6 12 1 1
jfreechart 4 6 13 13 1 1
jftp 4 10 16 28 1 5
pmd 1 2 2 10 1 2
xalan 11 56 3 8 1 1

Total 48 154 67 165 17 30

When running TAMIFLEX on a program, some test cases are

needed. For the six GUI programs, findbugs, gruntspud,

h2, jEdit, jfreechart and jftp, we exercise their GUI

to invoke their main functionalities just like a user does, in 5

minutes each. Take jfreechart as an example. We exercise

its GUI by designing different charts and exporting them to

files. There are four non-GUI programs. For batik, pmd and

xalan, we have designed 10 test cases each guided by their

user tutorials in order to exercise their main functionalities.

When applying MIRROR to a program, we focus on the

reflective calls that are identified by SOOT and analyzed

scalably under a budget (discussed below). For freecs, a

chat server, we start it up for it to read several configuration

files (without providing any explicit input from us).
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TABLE III: Efficiency and effectiveness of MIRROR. For efficiency, the last column gives the analysis time spent by MIRROR

(in all its four stages). The second last column gives the analysis time spent by SOOT on performing its pointer analysis

and building the call graph, ICFG and def-use chains. For effectiveness, the results in Table II are further analyzed. For each

type of Java reflection API considered, the number of new reflective calls and reflective targets found by MIRROR relative to

TAMIFLEX are given. The number of additional call-graph edges reachable from these new reflective targets are also given.

Program Reflection API
TAMIFLEX MIRROR Increased Call-Graph Edges Analysis Times (secs)

#Calls #Targets #Calls #Targets App App + Lib SOOT MIRROR

batik

Class.newInstance 3 4 (+)0 (+)5

(+)74 (+)637 179.6 310.2
Method.invoke N/A N/A (+)0 (+)0
Constructor.newInstance N/A N/A (+)0 (+)0
Total 3 4 (+)0 (+)5

findbugs

Class.newInstance 2 2 (+)0 (+)0

(+)22328 (+)134769 117.2 237.9
Method.invoke N/A N/A (+)1 (+)2
Constructor.newInstance 1 1 (+)0 (+)0
Total 3 3 (+)1 (+)2

freecs

Class.newInstance 3 3 (+)1 (+)1

(+)728 (+)60965 70.5 282.1
Method.invoke 1 1 (+)2 (+)55
Constructor.newInstance 2 2 (+)0 (+)0
Total 6 6 (+)3 (+)56

gruntspud

Class.newInstance 2 5 (+)0 (+)0

(+)5 (+)120887 117.4 395.8
Method.invoke 3 3 (+)5 (+)5
Constructor.newInstance N/A N/A (+)0 (+)0
Total 5 8 (+)5 (+)5

h2

Class.newInstance 2 10 (+)2 (+)2

(+)22 (+)360300 103.9 451.7
Method.invoke 4 8 (+)4 (+)4
Constructor.newInstance 1 1 (+)0 (+)0
Total 7 19 (+)6 (+)6

jEdit

Class.newInstance 1 1 (+)3 (+)3

(+)174949 (+)498536 133.9 375.4
Method.invoke 2 10 (+)2 (+)8
Constructor.newInstance 1 29 (+)0 (+)0
Total 4 40 (+)5 (+)11

jfreechart

Class.newInstance N/A N/A (+)2 (+)2

(+)97590 (+)1042689 122.7 244.2
Method.invoke 3 5 (+)9 (+)9
Constructor.newInstance 1 1 (+)1 (+)1
Total 4 6 (+)12 (+)12

jftp

Class.newInstance 1 7 (+)13 (+)21

(+)94 (+)121745 157.2 950.6
Method.invoke 3 3 (+)2 (+)2
Constructor.newInstance N/A N/A (+)0 (+)0
Total 4 10 (+)15 (+)23

pmd

Class.newInstance 1 2 (+)1 (+)8

(+)176 (+)150519 70.8 77.2
Method.invoke N/A N/A (+)0 (+)0
Constructor.newInstance N/A N/A (+)0 (+)0
Total 1 2 (+)1 (+)8

xalan

Class.newInstance 7 28 (+)2 (+)7

(+)264 (+)121568 65.7 303.1
Method.invoke 4 28 (+)0 (+)0
Constructor.newInstance N/A N/A (+)0 (+)0
Total 11 56 (+)2 (+)7

Average 5 15 (+)5 (+)14 (+)29623 (+)261261 113.9 362.8

Looking at Table II, we find that MIRROR is complementary

to TAMIFLEX. Indeed, MIRROR is actually designed to play

this important role by filling a gap left by pure static and

dynamic reflection analysis. For these two tools, neither is

strictly more sound than the other. There are reflective calls

that can be resolved by TAMIFLEX but not by MIRROR

(TAMIFLEX- TAMIFLEX ∩ MIRROR). There are two reasons

behind. First, there are 13 reflective calls that are invisible

to MIRROR, with 2 in batik, 1 in findbugs and 10 in

xalan. This happens since SOOT (and other static tools, in

general) cannot soundly build the call graph for a program due

to its inadequate modeling of dynamic class loading, reflection

and native libraries, highlighting again the significance of

reflection analysis in practice. Second, for the remaining

reflective calls totaling 18 in TAMIFLEX- TAMIFLEX ∩ MIR-

ROR (visible to MIRROR), MIRROR’s call-graph reduction is

unscalable (due to the inherent complexity of program slicing),

despite its significant better scalability than traditional slicing,

as discussed later. This happens when their du-chains usually

span across many methods, highlighting an important avenue

for future research on reflection-oriented slicing.

Conversely, there are reflective calls that can be resolved by

MIRROR but missed by TAMIFLEX (MIRROR- TAMIFLEX ∩
MIRROR) since these calls are not reached during program

execution. MIRROR resolves more reflective calls in every

application except batik. In particular, MIRROR finds 56
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TABLE IV: Comparing reflection-oriented and traditional slicing in terms of slice sizes and slicing times. For a program, a

slice is measured by the number of methods/statements sliced for all its reflective calls considered (Column 4 of Table II). For

the traditional slicer, “TO (x/y)” indicates that out of y reflective calls analyzed, x Times Out under the budget allocated.

Program
Budget
(mins)

Reflection-Oriented Slicing Traditional Slicing
#Mtds #Stmts Time (secs) #Mtds #Stmts Time (secs)

batik 40 12 117 4.3 2080 16244 TO (1/1)
findbugs 55 12 91 3.4 3081 18893 TO (2/3)
freecs 90 71 746 78.9 2403 22032 TO (5/6)
gruntspud 50 11 129 33.6 9382 53304 TO (6/7)
h2 150 19 138 63.7 23757 162117 TO (7/10)
jEdit 130 12 124 7.1 7691 49452 TO (3/6)
jfreechart 65 21 211 3.6 40883 346618 TO (13/13)
jftp 150 63 1676 40.5 22956 189145 TO (12/16)
pmd 75 10 104 3.5 10 109 0.1 (0/2)
xalan 30 6 572 120.4 125 2295 TO (1/3)

Average 84 24 391 35.9 11237 86021 TO (5/7)

new targets in freecs, because it has activated a path with

many reflective targets read from a file.

For all the 10 programs, TAMIFLEX finds 154 targets at 48

reflective calls and MIRROR finds 165 targets at 67 reflective

calls. In total, MIRROR resolves 104.2% more reflective calls

and 87.7% more reflective targets, measured by (((MIRROR

− TAMIFLEX ∩ MIRROR)/TAMIFLEX) × 100)%. MIRROR

discovers reflective targets that are not found by TAMIFLEX in

all programs. For reflective calls, the percentage improvements

range from 0.0% (batik) to 375.0% (jftp) with an average

of 118.7%. For reflective targets, the percentage improvements

range from 12.5% (xalan) to 933.3% (freecs) with an

average of 208.9%.

Finally, Table III provides a breakdown of the results

in Table II on the effectiveness of MIRROR, together with

the analysis times of MIRROR for the 10 programs to

demonstrate its efficiency. Due to the new reflective targets

discovered, MIRROR enables between 5 (gruntspud)

and 174949 (jedit) call-graph edges to be reached from

these new targets in the application code. These numbers

increase to 637 (batik) and 1042689 (jfreechart),

respectively, if the library code is also included. For example,

in findbugs, MIRROR finds only two new reflectively called

methods, findbugs.gui.FindBugsFrame.main()
and findbugs.gui2.Driver.main(). However, both

methods can reach 22328 call-graph edges in the application

code and 134769 call-graph edges if the library code is also

considered. These call-graph edges found can significantly

increase the code coverage of a variety of bug detection and

security analysis tools.

As for efficiency, MIRROR spends an average of only 362.8

seconds (i.e., just above 6 minutes) on analyzing a program,

by performing the fastest for pmd (in 77.2 seconds) and the

slowest for jftp (in 950.6 seconds). It is not informative to

compare TAMIFLEX and MIRROR in terms of their analysis

times. MIRROR is fully automatic without requiring any user

inputs. However, TAMIFLEX can only run under some given

inputs. As discussed in Section I, when applying TAMIFLEX

to analyze GUI applications, the user needs to spend a lot of

human efforts to manually launch GUI operations (in order to

generate user inputs for these applications).

B. RQ2: Reflection-Oriented Slicing

Table IV compares MIRROR’s reflection-oriented slicer with

a backward slicer that we have implemented in SOOT based

on traditional slicing [23], [24] to reconfirm its known un-

scalability for object-oriented programs [25], [26]. For each

program, Table II (Column 4) gives the number of reflective

calls analyzed by MIRROR. For both slicers, the same time

budget is allocated to a program (Column 2 in Table IV),

which is calculated as follows. For each program, MIRROR

computes path-based slices separately for its representative

paths constructed at its reflective calls analyzed. Looking

ahead in Figure 10, the number of representative paths per

program ranges from 6 (xalan) to 30 (h2 and iftp) with

an average of 17. The average number of paths per reflective

call ranges from 1 (jfreechart) to 8 (batik) with an

average of 4. For MIRROR, each path is given a maximum of

5 minutes to be sliced. If a reflective call has N representative

paths, then the traditional slicer is given a maximum of 5 ∗N
minutes to slice from the reflective call.

As is clear from Table IV, MIRROR is far superior to the

traditional slicer. On average, MIRROR spends 35.9 seconds

while including at least 89.1% fewer methods and 87.4%

fewer statements than the traditional slicer. Note the use of “at

least” here. As indicated in Column “TO (x/y)”, the traditional

slicer times out in x out of y reflective calls analyzed in a

program. Note that a slice produced by the traditional slicer

includes the methods and statements obtained before it times

out. The traditional slicer remains unscalable for these time-

outed calls even if the budget is tripled, causing more methods

and statements to be included in their slices.

Both slicers obtain similar results for pmd and xalan,

since the reflective calls analyzed are close to main(). The

traditional slicer is faster for pmd (with only one reflective

call analyzed), since MIRROR needs to spend some time on

building the sub-call graph even for analyzing just one call.
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C. RQ3: Automatic Test Case Generation

Figure 10 evaluates the effectiveness of MIRROR’s auto-

matic test case generation. There are four bars for a program,

with the first split into the last three. The first bar represents the

number of representative paths in the program. The second and

third give the number of feasible and infeasible paths detected,

respectively. The last indicates the number of paths that

cannot be solved by our constraint solver due to unmodeled

constraints on file operations (reading from unknown files).

Fig. 10: Path solving during test case generation.

MIRROR is effective in solving path constraints ef-

fectively. In total, there are 167 paths. MIRROR fails

to solve only 4 paths related to one reflective call,

getInstance.invoke(arg0), which resides in method

Freecs.Server.loadCommands() in freecs, since

they all involve reading some class names from an unknown

file. However, MIRROR can successfully generate the test cases

for 2 other paths related to the same reflective call, as the file

name used is a string constant. For the remaining 161 paths,

only 7 paths are found to be infeasible, indicating that our

path selection strategy is viable.

MIRROR is efficient in its test case generation. MIRROR

spends 7.66 seconds in batik and less than 2 seconds in

each remaining one, with an average of only 1.3 seconds.

V. RELATED WORK

We review only the work mostly related to this paper.

a) Static Reflection Analysis: Several techniques exist

for analyzing Java programs [6], [7], [10], [11], [15]–[17],

[25], [42]. Livshits et al. [10] described the first static analysis

for Java, which resolves reflective targets by tracking the flow

of class/method/field names. Recently, Li. et al. introduced

ELF [6] and SOLAR [7] to resolve reflective targets more

effectively by applying sophisticated type inference.

Static reflection analysis has also been a subject of investiga-

tion for Android apps [43]–[45]. Li et al. [44] relied on string

inference to resolve reflective calls in Android apps. Zhang et

al. [45] presented RIPPLE, an approach to resolving reflective

calls in Android apps in incomplete information environments.

The main challenge faced by static reflection analysis is

how to balance the number of false reflective targets generated

with the effectiveness realized in finding true targets. MIRROR

tackles this challenge by statically analyzing only the program

paths leading to a reflective call and dynamically detecting the

reflective targets accessed along these paths.

b) Dynamic Reflection Analysis: There are some tools

for Java programs [16], [17]. Hirzel et al. [16] proposed an

online pointer analysis for monitoring the run-time behaviors

of dynamic language features. Bodden et al. [17] introduced

TAMIFLEX compared against in this paper.

The main challenge faced by dynamic reflection analysis is

how to balance code coverage and analysis overhead. MIRROR

tackles this challenge by focusing on the program paths

exercising different targets at a reflective call and dynamically

exercising these paths with automatically generated test cases.

c) Static and Dynamic Reflection Analysis: There are

some prior studies for Android apps [46], [47]. STADYNA

[47] interleaves static and dynamic analysis to reveal the

program behaviors of dynamic class loading and reflection.

However, this requires a modified Android virtual machine to

log the side-effects of program behaviors (e.g., the reflective

targets accessed) at runtime and involves human efforts (e.g.,

in preparing for test inputs), but with no guarantee for code

coverage. HARVESTER [46] is designed to extract runtime

values from Android apps, by executing a backward slice of

an app on a stock Android emulator or real phone to log the

values of interest, such as some class and method names.

MIRROR differs from STADYN and HARVESTER in several

ways. First, MIRROR is the first for combining static and

dynamic analysis in handling large Java applications. Second,

MIRROR is fully automatically but STADYN is not. Third,

MIRROR relies a novel reflection-oriented slicing technique to

select and execute path-based slices in order to scale MIRROR

for large object-oriented programs. In contrast, HARVESTER

relies on traditional slicing to handle relatively small Android

apps except that some environmental variables are modeled

for the purposes of reducing slice sizes.

d) Program Slicing: Traditional slicing [23], [24] does

not scale to large object-oriented programs [25], with the key

bottleneck coming from handling of the heap [26]. Thus,

existing techniques [31]–[33], [48] obtain their points of

interest differently according to different goals. Path slicing

[49] takes as input a program path leading to a target statement

and eliminates all the statements that are irrelevant towards the

reachability of the target statement. Thin slicing [26] improves

scalability for object-oriented programs by ignoring control

dependences and base pointer data dependences. Li et al. [28]

introduced program tailoring to focus on the statements that

pass through a sequence of API calls, including also the ones

with no data or control dependences on the sequence. MIRROR

differs from these by finding path-based slices confined to a set

of du-chains in order to resolve reflective targets effectively.

VI. CONCLUSION

MIRROR is the first automatic Java reflection analysis that

combines static and dynamic analysis to assist pure dynamic

analysis tools to discover more reflective targets precisely and

efficiently in large real-world Java applications.
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Reflection analysis is challenging but significant. Currently,

software industries lack adequate tools for handling reflection-

heavy applications, causing many call-graph edges to be invis-

ible to a variety of analysis tools. MIRROR represents a step

forward towards developing effective reflection analysis tools.

MIRROR can be extended in several directions. First, a better

call-graph reduction algorithm can be developed to enable

more reflective calls to be sliced efficiently for large codebases.

Second, its constraint solver can be improved to handle some

file operations on some unknown file names. Third, some

design patterns on reflection usage can be exploited to improve

its efficiency and effectiveness further. Finally, some Android-

specific analysis techniques (e.g., for callbacks and intents)

can be added in order to handle Android apps.
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