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With the increasing need to apply modern software techniques to hardware design, Verilog, the most popular

Hardware Description Language (HDL), plays an infrastructure role. However, Verilog has several semantic

pitfalls that often confuse software and hardware developers. Although prior research on formal semantics

for Verilog exists, it is not comprehensive and has not fully addressed these issues. In this work, we present a

novel scheme inspired by previous work on defining core languages for software languages like JavaScript

and Python. Specifically, we define the formal semantics of Verilog using a core language called _+ , which

captures the essence of Verilog using as few language structures as possible. _+ not only covers the most

complete set of language features to date, but also addresses the aforementioned pitfalls. We implemented _+
with about 27,000 lines of Java code, and comprehensively tested its totality and conformance with Verilog.

As a reliable reference semantics, _+ can detect semantic bugs in real-world Verilog simulators and expose

ambiguities in Verilog’s standard specification. Moreover, as a useful core language, _+ has the potential to

facilitate the development of tools such as a state-space explorer and a concolic execution tool for Verilog.
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1 INTRODUCTION

With the emergence of domain-specific architectures (e.g., various neural network chips for deep
learning), there is an increasing need to apply modern software techniques to hardware design
to address issues of reliability, security, and productivity [Truong and Hanrahan 2019]. Verilog,
the most popular Hardware Description Language (HDL) [Golson and Clark 2016], plays an
infrastructure role in this trend. Verilog is designed to describe digital circuit models that can be
synthesized into real hardware or simulated in software. Many hardware reliability and security
methods [Grimm et al. 2018; Witharana et al. 2022] are developed upon Verilog, and new hardware
languages like Chisel [Bachrach et al. 2012] that aim to improve hardware design productivity use
Verilog as the back-end due to its mature industrial support for synthesis and simulation.

Despite its importance, Verilog has a number of semantic pitfalls, as outlined in Table 1. These
pitfalls often arise from hardware-focused features that have unique but not well-designed semantics,
which can confuse both software and hardware developers. For software developers who develop
various tools for Verilog, these pitfalls can exhibit unusual behaviors that are difficult to handle
compared to those of software languages. For hardware developers, understanding those pitfalls
may be more challenging, as it often requires a deep understanding of software, e.g., simulators,
making it hard to locate the root reasons of certain semantic bugs caused by the pitfalls. Moreover,
these issues are exacerbated by the fact that these features are often described in inaccurate and
ambiguous prose in Verilog’s specification.

It is essential to emphasize that the semantics mentioned earlier encompass both hardware syn-
thesis and simulation aspects. We argue that despite much Verilog code being purely synthesizable,
it is crucial to consider the semantics for simulation. In the real world, hardware programmers
dedicate substantial time to simulating, understanding, and debugging Verilog programs (even
though SystemVerilog may be used by programmers to write testbenches for simulation, it still
inherits the simulation mechanism from Verilog). Therefore, focusing solely on the synthesizable
subset would be insufficient. As an example, delay control is frequently employed in simulation to
sample outputs or generate inputs at specific times for RTL design under test. However, it often
poses challenges for programmers in determining when exactly those delayed statements are
executed, potentially leading to bugs. Formal specification of such features, even if they are not
synthesizable, holds value in addressing these challenges. Notably, the recent prominent hardware
representation work LLHD [Schuiki et al. 2020] also provides primitives to support behavioral
features like delay controls, recognizing the significance of simulation scenarios.

Unfortunately, prior research on formal semantics for Verilog has fallen short in accurately and
completely addressing these pitfalls in synthesis and simulation, as summarized in Table 2. For
example, the state-of-the-art formal semantics for Verilog [Meredith et al. 2010] still fails to capture
the essential difference between nets and variables, leading to the disregarding of the distinctive
problem of multiple drivers in Verilog. Additionally, they did not account for a set of language
features that are hard to extend based on its semantic core.

In this work, we aim to clarify those pitfalls by defining the formal semantics of Verilog using a
core language _+ that captures the essence of Verilog with as few language structures as possible.
This core-language method has been used successfully in defining semantics for popular languages
like JavaScript [Guha et al. 2010] and Python [Politz et al. 2013], and offers the benefits of facilitating
proofs and tools, as well as providing insights into the language [Krishnamurthi 2015]. Our work is
greatly inspired by these illuminating core-language works on software languages.

Throughmeticulous handling of these pitfalls, our _+ language naturally yields themost complete
formal semantics of Verilog to date. It covers nearly all features for synthesis and simulation, with
exceptions to user-defined primitives, switch-level modeling, automatic functions and tasks, and
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Table 1. Summarization of the representative Verilog features that have pitfalls in their semantics, which
make previous semantic work inaccurate and o�en confuse developers. These features are categorized as per
the Verilog specification. Section 2 provides an overview for a major portion of these features and Section 3
shows how our core language _+ handles them formally. The relevant sections are listed in the final column,
with “ext” indicating that the corresponding topic will be explored in our supplementary file.

Categories Representative Features Abbr. Differences from Software Languages Pitfalls in Semantics Sections

Data

Bit Value BV

Verilog’s basic value is a 4-value bit: 0, 1, x, and
z. The uncommon x and z bits represent un-
known and high-impedance respectively.

Unexpected x and z values in evalua-
tion.

3.1

Net N

Nets are designed to model physical wires. They
are often used like variables but have unique
ability to resolve problem of multiple drivers
caused by continuous assignments.

Unaware of the resolution functions
defined for nets to resolve the prob-
lem of multiple drivers.

3.2

Expression
Context-determined
Expression

CE

The implicit type conversions in an expression
are affected by the context where the expression
is given.

Rules for such conversions are intri-
cate and not clear in Verilog specifica-
tion.

3.3

Timing Control
Delay Control
Event Control
Repeat Event Control

TC

Timing controls are synchronous primitives
unique in Verilog, especially delay controls that
are used to synchronize processes by waiting
on time-related conditions.

Repeat event control is often mistak-
enly treated as syntax sugar. In fact,
it requires extra states to be formally
modeled.

3.4 & ext

Statement

Blocking Assignment BA Same as assignments in software languages. None. 3.5.1

Nonblocking Assignment NBA

The RHS value is not assigned to LHS until the
end of a time step. This unique semantics is to
model the update to physical registers and can
naturally avoid data-races in simulation.

Fail to ensure the determinism about
the result of multiple NBAs to the same
variable within a time step and fail to
handle NBA with an optional TC.

3.5.2

Procedural
Continuous Assignment

PCA
Create and cancel a continuous assignment at
runtime.

PCA can override plain continuous as-
signments, leading to complications
in resolution functions.

ext

Advanced Flow Control
(e.g., fork, disable)

AFC

Resemble those used in software languages.
Fork allows for creating concurrent executions
at runtime, while the disable statement can
break the control flows of processes.

Hard to extend existing works on Ver-
ilog semantics to support AFC.

ext

Continuous
Assignment

Continuous Assignment CA
The RHS’s value is continuously assigned to the
LHS, which is a Verilog-specific feature.

Multiple CAs to the same net or reg in-
troduces the problem of multiple dri-
vers. In addition, CA with TC has the
inertial-delay problem.

3.6

Schedule Scheduling Semantics SCH

Determine how to schedule concurrent con-
structs in Verilog, such as continuous assign-
ments and processes created by behavioral mod-
eling.

Many implementations deviate from
Verilog specification, resulting in in-
consistent behaviors and possible hid-
den data races.

3.7

Module Port Connection CONN
Variables on two sides of input or output ports
are connected using CAs.

For an inout port, both sides are
aliased.

ext

Task&Function Lifetime of Variables LT

Functions and tasks in Verilog allow variables
to be declared as either stack variables or static
variables.

By default, variables are static. ext

System T&F System Task&Function STF Resemble system calls. None. ext

Gate-Level Gate Instantiation GATE Model circuits using logical gates. None. ext

specific system tasks and functions. The rationales for exclusion are as follows: User-defined
primitives, which were utilized in early Verilog days to form custom logic components based on
truth tables, have become obsolete due to contemporary Verilog features that function equivalently.
Switch-level modeling presents more elaborate hardware descriptions than logic gates, but its
low-level nature may result in more complicated simulation. Furthermore, current synthesis tools
can automatically optimize the circuits that they generate at this level. Automatic functions and
tasks are uncommonly used in pure Verilog and are not synthesizable. Their primary purpose is to
facilitate writing testbenches with the aid of advanced SystemVerilog features that extend beyond
Verilog. System tasks and functions resemble system calls, and we only model the commonly used
part of them.
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Table 2. The completeness of related works on Verilog semantics. Features are from Table 1. One feature is
marked by “ ” if it is not supported or totally wrongly modeled by some work, by “ ” if it is fully supported
without mistakes, and otherwise by “ ”, denoting partial support or (mostly) the pitfalls described in Table 1.

BV N CE TC BA NBA PCA AFC CA SCH CONN LT STF GATE

[Gordon 1995]

[Fiskio-Lasseter and Sabry 1999]

[He and Xu 2000]

[He and Zhu 2000]

[Dimitrov 2001]

[Meredith et al. 2010]

Our work

Please note that _+ is not so tiny as core languages designed for software languages because
Verilog inherently surpasses the complexity of software languages. This complexity stems from
its various timing controls, intricate scheduling mechanisms, unique procedural statements, such
as nonblocking assignments, necessitating additional mechanisms to accurately and completely
model its semantics. As a result, the core of _+ is larger compared to software languages. We have
balanced the tractability of _+ while keeping its completeness by trying to minimize the number of
constructs of _+ , in the sense that certain Verilog features would not be fully modeled by _+ if more
_+ constructs were further removed. As a result, we have desugared modules, port connections,
functions, tasks, initial/always blocks, fork-join blocks, etc., into fewer and simpler constructs. Even
though, it is nearly infeasible to present _+ in full given the space limits. Thus, we have separately
provided a supplementary file [Chen et al. 2023b] to formalize and explain all the other language
features, highlighted as “ext" in Table 1, based on our semantic core.

Verilog Program 𝜆! Program
Desugar

𝜆!Verilog

Verilog Result 𝜆! Result
Difference

Simulator Interpreter

Fig. 1. Testing strategy for _+ .

To demonstrate that _+ has totality for desugaring
real-world Verilog programs and has conformance
with the Verilog specification, we implement and test
it by following the strategy used in existing works
for core languages [Guha et al. 2010; Krishnamurthi
et al. 2019; Politz et al. 2013] as depicted in Figure 1.
This strategy treats Verilog simulators as the clos-
est approximation to the missing complete formal

specification of Verilog and compares _+ ’s results with those of real-world Verilog simulators on a
sufficient number of test cases. For our comprehensive testing, we utilized two of the most popular
open-source Verilog simulators: Icarus Verilog [Williams 2023] and Verilator [Snyder 2023a]. We
also prepared two distinct suites of test cases to evaluate _+ from different aspects: one suite con-
sisting of 824 test cases sourced from the Icarus Verilog testbench, encompassing all representative
features of Verilog, and the other suite comprising real-world programs primarily sourced from
open-source projects. The evaluation results were promising, demonstrating that _+ performs well
in both totality and conformance; moreover, three types of real semantic bugs were uncovered in
Icarus Verilog and Verilator , indicating that _+ can be used as a reliable reference semantics for
detecting semantic bugs in real-world simulators. In addition, our testing even exposed four types
of ambiguities in Verilog’s standard specification.

Finally, as a core language, the essence of _+ lies in its minimal language constructs, which makes
it easier to develop tools. In this regard, we discuss how _+ and its interpreter can be utilized to
develop other applications, such as a state-space explorer and a concolic execution tool for Verilog.
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In summary, this work makes the following contributions:

• We define _+ , the first core language for Verilog, which provides the most complete semantics
to date, identifying and addressing previously overlooked pitfalls in existing literature.

• We provide an implementation of _+ , comprising a desugaring translation from Verilog to _+
and an interpreter for _+ , encompassing approximately 27,000 lines of Java code (excluding
comments).

• We demonstrate the totality and conformance of _+ through comprehensive testing.
• We showcase _+ ’s ability to detect semantic bugs in real-world Verilog simulators and expose
ambiguities in Verilog’s standard specification, making it a reliable reference semantics.

• We discuss the potential for _+ to facilitate the development of a state-space explorer and a
concolic execution tool for Verilog, highlighting its usefulness as a core language.

• We have provided an artifact [Chen et al. 2023a] that describes all the bugs and ambiguities
detected, and we will make the implementations of _+ fully open-source.

2 VERILOG, INFORMALLY

Verilog is widely recognized as the most popular hardware description language used for both
synthesizing and simulating digital circuits [Golson and Clark 2016]. It allows developers to write
programs that describe digital circuits, which can then be inputted into a synthesizer to create
circuit-like representations for creating real hardware. This process, referred to as synthesis, is
analogous to how a software compiler produces executables. Additionally, developers can use
Verilog code to generate testing inputs for the hardware they have described. The entire program
can then be run through a simulator to simulate the actual response of the hardware under those
inputs. This simulation process is akin to program interpretation and is significantly less costly
than testing the hardware in a real environment.

Verilog provides numerous features for synthesis and simulation. However, many of these features
differ from those found in software languages, which can lead to pitfalls as outlined in Table 1.
These pitfalls frequently perplex both hardware and software developers, make it challenging to
achieve accuracy in prior semantic works on Verilog, and even result in semantic bugs in Verilog
implementations, such as simulators. Before delving into _+ that formally models Verilog semantics
and handles the aforementioned pitfalls in Section 3, let us first use an introductory example to
explain how some of the representative features of Verilog in Table 1 are employed to describe digital
circuits for synthesis (Section 2.1) and how Verilog programs are run in simulation (Section 2.2).

2.1 Describe Digital Circuits

Figure 2 presents a simple example of a digital circuit and the corresponding Verilog code snippet
describing it. The circuit comprises three electronic components interconnected by wires:

• Figure 2b: a clock generator that produces a clock signal clk that oscillates between 0 and 1

at regular intervals of physical time;
• Figure 2c: a counter that increments from 0 to 9 and resets to 0 when it reaches 9, whose
count value state changes only when signal clk changes from 0 to 1;

• Figure 2d: an adder that produces the circuit’s output r by adding m (assigned from the count
value state in Figure 2c) and the circuit’s input n.

Verilog provides nets (N) to model the physical wires that connect components in the circuit.
The four nets shown in Figure 2a are declared in Figures 2b and 2d using the syntax wire id. Nets
can carry bit values (BV), which represent electronic signals flowing on them. By specifying an
additional range, such as wire [3:0] r, a net can carry 4-bit values (with its wire id being r in
this example).
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clk
ClkGen Adder

m

n

r

Counter

state

(a) An example of a digital circuit.

1 reg c;

2 wire clk;

3

4 always #1 c = ~c;

5 assign clk = c;

(b) A clock generator.

1 reg [3:0] state;

2

3 always @(posedge clk)

4 if (state == 9) state <= 0;

5 else state <= state + 1;

(c) A synchronous counter.

1 wire [3:0] m;

2 wire [3:0] n;

3 wire [3:0] r;

4 assign m = state;

5 assign r = m + n;

(d) An adder.

Fig. 2. An example of a digital circuit described in Verilog that covers many key language features.

Verilog often employs high-level features to describe the logic between input and output wires of
components, rather than explicitly describing the logic gates (GATE) that make up the components.
These features are classified into two categories based on whether the logic is combinational or
sequential. Briefly, combinational logic has no state, while sequential logic accumulates a state based
on past inputs.
The adder (Figure 2d) is a typical combinational logic circuit, whose output is the sum of its

inputs. To describe it, a continuous assignment (CA) “assign r = m + n” is used. This means that
the value of r changes immediately whenever there is a change in either m or n, just like they are
physically connected and affected. The logic between the inputs and outputs (i.e., add the values of
m and n to r) is also intuitively modeled by applying the operation of “+”.
The counter (Figure 2c) is a typical sequential logic circuit. Sequential logic is essentially a

state machine, and Verilog provides variables and imperative statements to describe its states and
state transitions. In the example, a variable state is declared as reg [3:0] to track the current
count, and the statements are grouped into an always block to describe the count increasing until
it reaches 9, at which point it resets back to 0 and continues counting indefinitely (by always’s
semantics).
It is important to note the difference between nonblocking assignments (NBA) and blocking as-

signments (BA). Nonblocking assignments were originally created to simulate the assignment to
a register, which takes effect when the clock reaches positive/negative. Thus a nonblocking as-
signment, such as “state <= state + 1,” is executed at a uniformly specified time step, while
a blocking assignment, like “state = state + 1,” is not. In our example, we use nonblocking
assignments to prevent data races. If we used blocking assignments instead, it would be unclear
whether the old or new value of state would be read when another sequential logic concurrently
accessed its value. With nonblocking assignments, the new value of state is not immediately
assigned, but rather at a certain time step (will be explained later), when all other concurrent
sequential logic has read the old value. This ensures that data races are avoided, and the code’s
behavior becomes deterministic.
Moreover, the counter is a synchronous circuit that only updates its state when a global clock

changes its value. Verilog provides event control (TC) “@(posedge clk)” (see Figure 2c) to achieve
this behavior, which blocks state transitions until the clock signal flips from 0 to 1 (specified by the
positive edge of the clock, a.k.a., posedge).
The clock generator (Figure 2b) is the first component in the example circuit and has a unique

feature: it outputs an oscillating signal based on physical time. In Verilog, physical time is simulated
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using steps instead of units like microseconds, and delay controls (also denoted as TC) “#n” are
provided to block sequential logic for n time steps. The clock generator, as shown in Figure 2b, is
implemented by flipping its state c every one time step (#1) and driving that value to the wire clk,
which is used by other components such as the counter.

2.2 Run in Simulation

1 assign n = 1

2 initial begin

3 c = 0; state = 0; #0;

4 $display("%d", r);

5 #2 $display("%d", r);

6 end

Fig. 3. The example code to gener-
ate inputs for the code in Figure 2

To simulate the Verilog code in Figure 2, we need to provide
input to the circuit. This can be achieved using the code shown
in Figure 3. The input generation code initializes the input n,
clock flip variable c, and state and blocks itself for zero time
step (#0). It then prints the output using the Verilog system
task $display to check the value of output r. After two time
steps (#2), the output value is displayed again. The main code
is wrapped in an initial block that executes the statements in
its body only once during simulation. On the other hand, an always block (refer to the one in
Figure 2c) creates a process that executes its statements infinitely.

While the code is simple, based on our experience, many Verilog programmers are unclear about
how it will be executed due to the intricacies of Verilog’s scheduling semantics in its specification.
To facilitate comprehension of the subsequent material, we provide an intuitive overview of how
Verilog programs are simulated, with an explanation of the usage scenarios behind each phase.

Basically, Verilog schedules the concurrent execution of continuous assignments (each of which
can be seen as a statement executed in a separate process) and processes created from initial and
always blocks. For simplicity, we focus on the schedule of processes and assume that whenever the
right-hand side value of a continuous assignment changes, the new value is immediately assigned
to the left-hand side. Consequently, the scheduler operates as follows:

(1) All processes run concurrently until they are blocked by event or delay controls. Sequential
logic typically waits for a change in the clock signal (such as @(posedge clk) in Figure 2c),
while combinational logic waits for input changes (such as m and n in Figure 2d). If any
control conditions in process % are activated during the execution of these processes, % is
scheduled to run concurrently with those processes.

(2) When all processes are blocked, scheduler will activate any processes that have zero delay
(#0) and move to Phase (1). They are often test input generators that purposely wait before
generating the next input or printing results, to ensure the circuit fully reacts to their inputs.

(3) If there are no zero-delay processes to execute, any pending non-blocking assignments are
executed (which can be used to avoid data race as discussed earlier). If these assignments
activate any processes, the scheduler returns to Phase (1). This moment (the point of time
before executing Phase (4)) is referred to as the end of a time step since the scheduler will
advance the time step in the next phase.

(4) All processes are blocked, and the simulation time advances by one step. This activates any
delayed processes that were scheduled to run at that time. This typically results in clock
generator flipping its output, which then activates any sequential logic waiting on the clock.
Subsequently, the scheduler returns to Phase (1). This scheduling strategy ensures that the
clock does not flip its value until all other sequential logic completed their state transitions.

Let us use the example in Figure 4 to illustrate this simulation process. We suggest following this
figure while referring to the scheduling phases explained earlier and the code in Figures 2 and 3.
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ClkGen Counter Adder InputGen

Phase (1)
#1 @(posedge clk)

n ← 1

state ← 0

c ← 0

$display(r)

c ← ~c

state <= state + 1
@(posedge clk)

state ← 1 m ← state //1

$display(r)

m ← state // 0

Phase (2)&(3)

Time=0

Time=1

Time=2

#2

// No zero-delayed process and no pending non-blocking assignments

// 1

// 1

#0

// only evaluate 0+1, the assign

// is blocked until Phase (3)

// as in an always block, loop restarts

Phase (1)

Phase (1)

Phase (2)

Phase (3)

Phase (4)

Phase (1) // 2

// 1
Blocked by

Timing

Control

Trigger

Continuous

Assignments

Trigger

Blocked

Processes

Phase (2) // Activate zero-delay process (InputGen)

Phase (4) // Increase time step by one, trigger 1-delay process (ClkGen)

// Increase time step by one, trigger 2-delay process (InputGen)

// Here, ClkGen as in Phase(1) of Time=1

r ← m + n // 1

clk ← c

#1

r ← m + n //2

Fig. 4. An illustration of the simulation (execution) process for the code in Figures 2 and 3.

Figure 4 displays four columns ClkGen, Counter, Adder and InputGen, representing the four
processes created for the code in Figures 2b,2c,2d, and Figure 3, respectively. These processes run
concurrently, and for ease of illustration, we will focus on the flow that starts from InputGen.
During Phase (1) of Time 0, state is initialized to 0, triggering the continuous assignment m =

state in Adder. As a result, m is immediately updated, which further triggers the next continuous
assignment, updating r by m + n. Finally, InputGen is blocked by executing #0, which is a delay
control. At this point, all processes are blocked, and following Phase (2), InputGen is activated
since it contains zero-delay. This triggers the $display on line 4 in InputGen, outputting 1 for
r (= m + n = 0 + 1). After this, the process is blocked again by executing #2. Since there are no
zero-delayed processes and no pending non-blocking assignments, the current time step is passed,
as described in Phase (3).
Moving on to Phase (4), the time step advances by one, activating ClkGen. Here, c is flipped

because delay #1 is reached, and its change further triggers a continuous assignment to clk.
However, when clk changes from 0 to 1 as described in Phase (1), it immediately triggers the
posedge of Counter. As a consequence, the non-blocking assignment state <= state + 1 is
executed by the Counter. However, any non-blocking assignment will be blocked until the end
of the current time step, which is Phase (3). As a result, the non-blocking assignment is activated
during Phase (3), and the value of state is assigned 1 (= 0 + 1). This immediately triggers the
continuous assignments in Adder, and as a result, r is assigned 2 (= 1 + 1) finally.
We have now arrived at Phase (4) once again, and the time step has advanced by one, bringing

us to time step 2. This triggers any delayed processes that were scheduled to run at this time,
according to Phase (4) (which is identified as #2 in our scenario). As a result, the $display function
after #2 in InputGen is executed, resulting in the final output of 2 for r.

3 _+ : A TRACTABLE SEMANTICS FOR VERILOG

_+ is a core language that is as expressive as Verilog yet keeps tractable for proofs and tools. In this
section, we show how _+ addresses the representative features summarized in Table 1, with a focus
on those that are prone to pitfalls, by explaining the desugaring process or the formal operational
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? ∈ Program := n | ];?

] ∈ Item := : id : g | var id : g |

assign 23 ? id = 4 |

proc B

: ∈ NetKind := wire | wor | wand | · · ·

id ∈ Id := {(symbols)}

g ∈ Type := b1 | b2 | · · ·

bv ∈ BitVec := {(bit vectors)}

4 ∈ Expr := bv | id | op< (41, . . . , 4<)

2 ∈ TimingCtrl := 2ev | 23

2ev ∈ EventCtrl := @([)

23 ∈ DelayCtrl := #4

[ ∈ EventExpr := 4 | posedge 4 |

negedge 4 | [ or [

B ∈ Stmt := skip | B ; B | B ∥ B |

if 4 then B else B |

while 4 then B |

id = 2? 4 | id ⇐ 2? 4 |

2 B | blocked pid

pid ∈ ProcId := {(symbols)}

Fig. 5. The syntax of _+ , which uses fixed-width fonts for terminals and italics for non-terminals. The
symbol G? means G is optional. Despite its name, _+ follows the style of Verilog rather than the _ calculus.
This decision was made to facilitate the transfer of insights gained from _+ to Verilog.

semantics. Due to space limitations and readability concerns, we only present a subset of _+ that
covers the most commonly used features (and explain the remaining ones in the supplementary
material). However, this does not imply that other features are less important. For instance, Verilog
provides modules to enable the reuse of hardware description code, and these modules have ports
that are comparable to parameters in software functions. A special port of type inout provides the
ability to model buses, which are common in hardware. Because the specification only mentions
that it is “bidirectional” without any further explanation, all previous work miss its semantics, but
we discovered its alias semantics through an error when we intuitively (but incorrectly) modeled
real-world Verilog bus code by treating “bidirectional” as two mutual continuous assignments. In
our supplementary material, we provide detailed explanations of those features and present the
complete formal syntax and semantics of _+ , which we refer to as Full-_+ in the following sections.
The syntax and operational semantics of _+ are formally defined in a series of figures. Figure

5 presents the syntax of _+ . A _+ program ? consists of a list of items, which correspond to the
items constituting Verilog modules. We define four kinds of items in _+ :

• Net items: : id : g , desugared from Verilog’s net declarations.
• Variable items: var 83 : g , desugared from variable declarations in Verilog.
• Assign items: assign 23? id = 4 , directly correspond to Verilog’s continuous assignments.
• Process items: proc B , used to create processes executing statements B concurrently. Initial
blocks and always blocks in Verilog are desugared to proc B and proc while 1 then B .

Figure 6 defines the configuration, which represents the runtime state of a _+ program, and
defines function preprocess(?), which specifies how a _+ program ? is transformed into an initial
configuration conf . We will further explain the rules in Figure 6 in the relevant sections below.
Semantic rules for timing controls, statements, and continuous assignments are provided in Figures
7, 8, and 9. Figure 10 presents the scheduling rules. In the rest of this section, we follow the order
of Verilog features in Table 1 to explain their semantics in _+ .

General Notations. The f, V, ^, U,DU in the definition of configuration (Figure 6) are all maps that
can map a key : to a value using the notation like f (:). We denote the key set and value set of a
map< as keys(<) and vals(<), respectively. We define<(G) = ⊥ if and only if G ∉ keys(<). Here,
⊥ can be interpreted as the null in programming languages. We use {} to represent an empty
map, and extending a map< by a new key-value pair (:, E) is represented as<[: ↦→ E], whose
formal definition is<[: ↦→ E] (: ′) = (: ′

= :) ? E :<(:). We also treat a map as a set of key-value
mappings like {: ↦→ E, . . . }. For convenience, we use notation □⊥ to represent □ ∪ {⊥}, and use Σ
to represent all but the first element of conf in the following sections, i.e., Σ := f, V,Dnb, ^, U,DU , C .
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conf := (B, f, V,Dnb, ^, U,DU , C ),

B ∈ Stmt the statement being executed

f : (Id ∪ AssignId) ↦→ BitVec the store that maps variables, nets, and assign items to their values

V : ProcId ↦→ Cond a map from blocked processes to their waiting conditions

Dnb ⊆ (Id × BitVec × Cond)∗ a list of update events (Id × BitVec) controlled by conditions (Cond)

^ : Id ↦→ NetKind a map from nets to their net kinds

U : AssignId ↦→ (Id × Expr × DelayCtrl⊥) a map from assign items to their runtime information

DU : AssignId ↦→ (Id × BitVec × Cond) a map from assign items to their update events and control conditions

C ∈ N the simulation time step

AssignId := {(symbols) } the domain of identifiers for assign items

Cond := EventExpr ∪ N ∪ {✓} the domain of blocking conditions

preprocess(?) = conf iff ?, (skip, {}, {}, n, {}, {}, {}, 0) →∗
pp n, conf .

(PP-Net) (PP-Var)

f′
= f [id ↦→ defVal(:, g) ] ^′ = ^ [id ↦→ : ]

: id : g ;?, (. . . , f, . . . , ^, . . . ) →pp ?, (. . . , f
′, . . . , ^′, . . . )

f′
= f [id ↦→ defVal(var, g) ]

var id : g ;?, (. . . , f, . . . ) →pp ?, (. . . , f′, . . . )

(PP-CCA) (PP-CA) (PP-Proc)

aid = newId() U′
= U [aid ↦→ (id, 4, 23 ) ]

D′
U = DU [aid ↦→ genUpdEv( (id, 4, 23 ), f, C ) ]

assign 23 id = 4 ;?, (. . . , U, . . . ,DU , . . . )

→pp ?, (. . . , U
′, . . . ,D′

U , . . . )

aid = newId() U′
= U [aid ↦→ (id, 4,⊥) ]

D′
U = DU [aid ↦→ genUpdEv( (id, 4,⊥), f, C ) ]

assign id = 4 ;?, (. . . , U, . . . ,DU , . . . )

→pp ?, (. . . , U
′, . . . ,D′

U , . . . )

proc B ;?, (B′, . . . )

→pp ?, (B ∥ B′, . . . )

Fig. 6. Definition of configurations that represent the runtime states of _+ , and the preprocess(?) function
that transforms a _+ program ? into an initial configuration conf . The function is defined using a reduction
relation ];?, conf →pp ?, conf ′ that processes each item in the program and updates the configuration
accordingly.

We denote reduction relation between runtime configurations by conf → conf ′, and for simplicity,
we omit unchanged elements of conf in semantic rules.

3.1 Value and Type

Verilog values are represented by bit vectors bv in _+ , as defined in Figure 5. Correspondingly, the
only type g defined in the language is the b= type, which represents fixed-width =-bit vectors.
Unlike in software languages, bit vectors in Verilog consist of four-value bits: 0, 1, x, and z.

The x value represents an unknown bit and can occur when a bit vector is accessed by an index
out of its range. The z value represents high impedance and indicates the absence of signals. The
computation for bit vectors become more complicated when x and z values are involved, and we
will present a real case that produces unexpected x/z results for bit vectors in Section 5.2.

While theoretically bit vectors are able to model any data, _+ can be extended with additional
data types for pragmatic convenience, e.g., Full-_+ includes real numbers and arrays.

3.2 Nets and Variables

Nets and variables are fundamental components in Verilog that respectively model physical con-
nections and represent states. In _+ , they are declared using the two items: the net item : id : g

and the variable item var 83 : g , as shown in Figure 5. The id represents identifiers of the declared
nets and variables. The type g restricts possible values a net or variable can hold. The net kind :
includes the commonly used wire, as well as other kinds discussed later. Note that we adopt the
term net kind for what is called the net type in Verilog to avoid confusion because a net type (e.g.,

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 230. Publication date: October 2023.



The Essence of Verilog: A Tractable and Tested Operational Semantics for Verilog 230:11

wire) plays no role as types that are traditionally used to restrict what values a net can hold. Note
that the syntax of variable declaration “reg a” in Verilog is replaced by a clearer “var a:b1” in
_+ , because the keyword reg is misleading as these variables are not necessarily synthesized to be
physical registers.
Net items and variable items are desugared from Verilog’s net and variable declarations. For

example, “wire [2:0] u” in Verilog corresponds to “wire u:b3” in _+ . The difference is that
range declarations (e.g., [2:0]) are replaced by type annotations (e.g., b3). In Verilog, the range
declaration serves two purposes: indicating that the net has bit vector values and specifying how
bits are indexed in the net, i.e., bits of a net declared with range [h:l] (e.g., [4:2]) can be accessed
by indices ; , ; + 1, ..., ℎ (e.g., 2, 3, and 4). In _+ , the latter feature is desugared to b= (= = ℎ − ; + 1)
vectors, and all indices 8 of the range in Verilog are replaced by 8 − ; . Therefore, _+ only uses one
kind of type annotations for all range declarations.
When preprocessing net and variable items, _+ allocates space in the store f for the nets and

variables, and initializes them with default values given by function defVal(:, g), as formalized by
the rules PP-Net and PP-Var in Figure 6. Full-_+ provides the definition of defVal(:, g).

Difference between Nets and Variables. The syntactic difference between nets and variables is
well-known: nets can only be used for continuous assignments, while variables are limited to pro-
cedural assignments. This restriction prevents inadvertent misuse of nets and variables in different
assignments. However, the semantic difference between nets and variables are not well-understood.
For example, [Meredith et al. 2010] concludes that nets and variables are indistinguishable at
runtime when they both represent values, which is not true.

Thanks to the development of _+ , we find that the essential difference between nets and variables
lies in their handling of the multiple drivers problem. This problem occurs when a net has multiple
continuous assignments driving it, making it unclear what value the net should take. Such scenarios
often arise when modeling bus, which is a special net that have multiple electronic components
connecting to it, driving or receiving signals from it. Without properly addressing the multiple
drivers problem, such scenarios cannot be modeled. Note that variables can also have multiple dri-
vers problems because Verilog provides a statement called procedural continuous assignment (PCA)
that attaches (or detaches) a continuous assignment to a variable at runtime, which is intentionally
used to force the variable to hold some value for a certain period in simulation.

Previous work on Verilog semantics overlooked the multiple drivers problem, as shown in Table
2, resulting in a incorrect model for nets, e.g., [Meredith et al. 2010] as discussed above.
To handle multiple drivers, we use resolution functions in _+ to merge conflicting values from

those drivers and take the results as their values. Resolution functions are specified by net kinds.
For instance, if a net is declared as “wor u:b3” (the wire OR kind) and is driven by two continuous
assignments, “assign u = 3’b010; assign u = 3’b001”, it would apply the “or" function to the
conflicting values 3’b010 and 3’b001 and set its final value as 3’b011. If the net is declared as
the common wire kind, according to the specification, its driving values are resolved to 3’b0xx,
where x represents an unknown bit. This process is formalize as bvA = resolve(id, f ′, ^, U) by the
rule E-ContUpdate in Figure 9, where id identifies a net that have multiple drivers, f ′ and U are
used to find those driving values, and ^ records the net kind used to look up the resolution function
for each net. The semantics of the resolve function is explained in details in Section 3.6.
In contrast, variables do not have resolution functions. When several continuous assignments

are attached to the same variable by several PCAs, the latest continuous assignment will simply
overwrite the previous ones. Those semantics are formally defined in Full-_+ .
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3.3 Expressions

Figure 5 gives the syntax of expressions, which is defined recursively by applying an<-ary primitive
operator op< to< sub-expressions, with bit vectors and identifiers serving as the base cases. We
define the evaluation of an expression 4 with respect to a store f using the function J4Kf :

J4Kf =




bv 4 = bv

f (id) 4 = id

X< (op<, J41Kf, . . . , J4<Kf) 4 = op< (41, . . . , 4<)

Here, we use an auxiliary function X< to model the semantics of all primitive operators op< . For
a full list of operators and the definition of X< , please refer to our supplementary material. Note
that some Verilog expressions can have side effects on the store f , so we replace J4Kf by a more
complicated reduction relation 4, Σ → 4 ′, Σ′ in Full-_+ .

Context-Determined Expressions. In Verilog, expressions are weakly typed and thus their eval-
uations involve implicit type conversions, which is an error-prone feature. In addition, Verilog
expressions are context-determined. This means that the implicit type conversions are not only
determined by the expressions themselves, but also determined by the context in which the ex-
pressions are used. For example, consider the expression a + b in an assignment c = a + b,
where a and b are unsigned 32-bit vectors and c is an unsigned 33-bit vector. According to Verilog
specification [ver 2006], c is the context of a + b and determines what we call the context type of
a and b, which is an unsigned 33-bit vector type. Therefore, a and b will be converted to unsigned
33-bit vectors to match their context types before being added. If c becomes a 34-bit vector, a and
b will be converted to 34-bit vectors accordingly.

Context-determined expressions may have some benefits in certain scenarios, such as capturing
overflowed bits in addition. However, they exacerbate the issues associated with implicit type
conversions. Unfortunately, Verilog specification only provides an intricate and unclear description
of context-determined expressions, leaving them as pitfalls as shown in Table 1. As a result, they are
difficult for developers to understand and thus error-prone. For example, Icarus Verilog [Williams
2023], a popular Verilog simulator, could produced false results on context-determined expressions,
as we explore in Section 5.1.1.

In _+ , the implicit type conversions in context-determined expressions are made explicit during
desugaring (we carefully read Verilog specification and resolve inaccuracy in description of context-
determined expressions). For example, the add expression in the example above is desugared as
add(zext(a, 33), zext(b, 33)) in _+ , where zext is a _+ primitive operator that extends the
operand by zeros to the target length.

3.4 Timing Controls

Timing controls are critical synchronous primitives in Verilog, with three types: delay controls,
event controls, and repeat event controls. While _+ supports all three types, due to space constraints,
we do not introduce the less commonly used repeat event controls, but the semantic rules given
in this section can be easily extended to support them. For more information, please refer to our
supplementary material.
We explain the semantics of timing controls under the help of its typical usage as to block

processes (related rules are listed in Figure 7). When a process executes a statement guarded by
a timing control, it is blocked until the condition specified by the timing control is satisfied. The
code snippet in Figure 2 has illustrated such usage. Recall that the delay control “#1” in Figure 2b
blocks the clock generator from flipping its output until the simulation time advances one step,
and the event control “@(posedge clk)” in Figure 2c blocks the execution of sequential logic until
clk changes from 0 to 1 .
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(E-EvCtrl) (E-DlCtrl)

@([), f, C ⇓2 [, f, C

J4Kf = bv

△ = (x |z ∈ bv) ? 0 : uint(bv)

#4, f, C ⇓2 (△ + C ), f, C

uint(bv) = interpret bv as a two’s complement unsigned integer

int(bv) = interpret bv as a two’s complement integer

(E-Block) (E-Activate)
2, f, C ⇓2 cond, f, C pid = newId() V′ = V [pid ↦→ cond ]

2 B, V → (blocked pid; B) , V′
V (pid) = ✓

blocked pid → skip

Fig. 7. Semantic rules for establishing conditions from timing controls using 2, f, C ⇓2 cond, f, C , along with
rules for the primary usage of timing controls to block process execution (2 B). Unchanged elements in
configurations on both sides of→ are omi�ed for clarity.

As shown in Figure 5, in _+ , a timing control is denoted by 2 , and a statement guarded by it is
denoted by 2 B . To model the semantics of 2 B , _+ first establishes the condition cond specified by the
timing control using the reduction relation 2, f, C ⇓2 cond, f, C , where f and C are used to compute
the condition. For an event control @([), its condition is its event expression [ (by E-EvCtrl), and
for a delay control #4 , its condition is the delay value evaluated from 4 (by E-DlCtrl) plus the
current time (i.e., the C in configuration).

When a condition cond is established, we block the process executing 2 B by E-Block. Specifically,
the process is blocked by a special statement blocked pid before executing B . In addition, _+ puts
a unique pid along with the condition cond to the V .

Now we explain how a blocked process is activated. This happens when the blocking condition
becomes satisfied (denoted by ✓) on a certain event. Conditions may become satisfied on two kinds
of events: store changed events, represented by a pair (f, f ′) that records the old store and the
new store, and time advancing events, represented by the time step C . A store changed event is
generated when a value in the store changes (Sections 3.5), and a time advancing event occurs
when the simulation time advances (Sections 3.7). Once an event is generated, a helper function
onEvent(cond, ev) will be used to judge whether a condition is satisfied on the new event:

onEvent(cond, ev) =





✓ cond = [ ∧ ev = (f, f′) ∧ isRelevant([, f, f′)

✓ cond = C△ ∧ ev = C ∧ C△ ≤ C

cond otherwise

The isRelevant([, f, f ′) is used to check whether the store change event (f, f ′) can satisfy [. The
reason for this is that onEvent() is called for [ on every store change, but many of these changes
are irrelevant to [. The definition of isRelevant() is as follows:

isRelevant([, f, f′) =





isRelevant([1, f, f
′) ∨ isRelevant([2, f, f

′) [ = [1 or [2(
lsb(J4Kf), lsb(J4Kf′)

)
∈ �? [ = posedge 4

(
lsb(J4Kf), lsb(J4Kf′)

)
∈ �= [ = negedge 4

J4Kf ≠ J4Kf′ [ = 4

where lsb(bv) returns the least significant bit of the bit vector bv, J4Kf denotes the evaluation
result of expression 4 in store f , and �? and �= are edge sets that define all possible posedges and
negedges. For four-value bits, �? = {(0, 1), (0, x), (0, z), (x, 1), (z, 1)} and �= = {(1, 0), (1, x), (1, z),

(x, 0), (z, 0)}. If the associated condition of a process pid in V is satisfied by a new event, V (pid) will
be updated to ✓ (as explained in Sections 3.5 and 3.7). Subsequently, as per E-Activate, process
pid resumes execution.

3.5 Statements

In this section, we introduce how _+ models the statements in initial and always blocks in Verilog to
describe hardware components. Production of Stmt in Figure 5 defines the syntax of _+ statements.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 230. Publication date: October 2023.



230:14 Qinlin Chen, Nairen Zhang, Jinpeng Wang, Tian Tan, Chang Xu, Xiaoxing Ma, and Yue Li

(E-Seq) (E-Par-L) (E-Par-R) (E-Seq-Elim) (E-Par-ElimL) (E-Par-ElimR)
B1, Σ → B′1, Σ

′

B1; B2, Σ → B′1; B2, Σ
′

B1, Σ → B′1, Σ
′

B1 ∥ B2, Σ → B′1 ∥ B2, Σ′

B2, Σ → B′2, Σ
′

B1 ∥ B2, Σ → B1 ∥ B′2, Σ
′ skip; B → B skip ∥ B → B B ∥ skip → B

(E-If-True) (E-If-False) (E-While)
J4Kf = bv ¬(x |z ∈ bv) ∧ bv ≠ 0

if 4 then B1 else B2 → B1

J4Kf = bv (x |z ∈ bv) ∨ bv = 0

if 4 then B1 else B2 → B2 while 4 then B → if 4 then

(B ; while 4 then B) else skip

(E-CBA) (E-BA)

J4Kf = bv

id = 2 4 → 2 id = bv

J4Kf = bv f′
= f [id ↦→ bv ] V′ = activate(V, (f, f′)) D′

nb
= trigger(Dnb, (f, f

′))

id = 4, f, V,Dnb,DU → skip, f′, V′,D′
nb
, sched(DU , U, (f, f′), C )

activate(V, ev) = {pid ↦→ cond | pid ∈ keys(V) ∧ cond = onEvent(V (pid), ev) }

trigger(Dnb, ev) =

{
n Dnb = n

(id, bv, onEvent(cond, ev)) ++ trigger(D′
nb
, ev) Dnb = (id, bv, cond) ++D′

nb

(E-NB) (E-CNB) (Step-NB)
upd = genUpdEv( (id, 4,⊥), f, C )

id ⇐ 4,Dnb → skip,Dnb ++ upd

upd = genUpdEv( (id, 4, 2), f, C )

id ⇐ 2 4,Dnb → skip,Dnb ++ upd

B′ = peekActive(Dnb) B′ ≠ skip

B,Dnb
=1
→ (B ∥ B′) , delActive(Dnb)

genUpdEv( (id, 4, 2), f, C ) =

{
(id, J4Kf,✓) 2 = ⊥

(id, J4Kf, cond) 2, f, C ⇓2 cond, f, C

peekActive(Dnb) =




skip Dnb = n

id = bv; peekActive(D′
nb
) Dnb = (id, bv,✓) ++D′

nb

peekActive(D′
nb
) Dnb = (id, bv, cond) ++D′

nb

delActive(Dnb) =




n Dnb = n

delActive(D′
nb
) Dnb = (id, bv,✓) ++D′

nb

(id, bv, cond) ++ delActive(D′
nb
) Dnb = (id, bv, cond) ++D′

nb

Fig. 8. Semantic rules and functions for statements.

The semantics of initial and always blocks is to create processes executing their statements
concurrently in simulation. To model this behavior in _+ , we first desugar initial blocks (initial
B) and always blocks (always B) into _+ ’s process items of the form “proc B” and “proc while 1

then B”, respectively. Then we compose the statements in different process items using a special
statement B1 ∥ B2, called parallel composition, during preprocessing, and set the composed statement
as the first element of a configuration, as formalized by PP-Proc in Figure 6. We will explain the
semantics of parallel composition below.

Figure 8 gives semantic rules for all kinds of statements in _+ , including control-flow statements
and various assignments. As mentioned before, we omit unchanged elements in conf in reduction
relations for simplicity. Specifically, for B1 ∥ B2, by E-Par-L and E-Par-R, _+ will execute B1 and B2
concurrently. The semantics of other control-flow statements are straightforward, thus, in the rest
of this section, we focus on various assignments, which are the key features differentiating Verilog
from software languages.

Note that the assignment we discuss in this section incorporates intra-assignment timing controls,
such as the optional “2?” in id = 2? 4 . We address this feature because it can be difficult for developers
to understand, as it delays the assignment to some time later, making it challenging to reason about,
especially when combined with nonblocking assignments. In _+ , we restrict the LHS expressions
of assignments to be identifiers only, to simplifying the rules; but in Full-_+ , the LHS expressions
can also be arrays and bit accesses.
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3.5.1 Blocking Assignments. The semantics of blocking assignments (_+ syntax: id = 2? e) in
Verilog consists of two parts: (1) updating the value of the left-hand side (LHS) variable in a store; (2)
generating store changed events that can activate processes blocked by timing controls (Section 3.4)
and trigger controlled update events generated by nonblocking assignments (Section 3.5.2) and
continuous assignments (Section 3.6). The former is the same as what we usually call assignment in
software languages, and the latter is a unique feature of Verilog.

Figure 8 listed all semantic rules for blocking assignments. By E-BA, when executing a blocking
assignment, store changes from f to f ′; meanwhile, a store changed event (f, f ′) is generated.
This event unblocks processes that were previously waiting on related conditions by function
activate(V, ev). Specifically, the function updates the associated condition of each process in V using
onEvent() and if a process has its condition satisfied (✓), it can resume execution by E-Activate

in Figure 7. Moreover, store change events may affect the execution of nonblocking assignments
and continuous assignments by modifying Dnb and DU , which will be discussed in Sections 3.5.2
and 3.6, respectively.

Blocking assignments have another form that is guarded by an intra-assignment timing control,
with syntax id = 2 4 . Rule E-CBA shows how an intra-assignment timing control is reduced to a
normal one that guards statement on the leftmost side. The key distinction between id = 2 4 and
2 id = 4 is that the expression 4 in the former is evaluated first before the process is blocked.

3.5.2 Nonblocking Assignments. Nonblocking assignments (_+ syntax: id ⇐ 2? bv) have a funda-
mentally different behavior from blocking assignments: by their semantics, the RHS value is not
assigned to the LHS variable until the end of the time step. The concept of the “end of the time
step” is not the focus of this section and is formalized in Section 3.7.
To model nonblocking assignments in _+ , we set a queue Dnb of controlled update events

(id, bv, cond) in runtime configuration, so that we can save id (the LHS variable) and bv (the
RHS value) in the queue and execute the assignment later when the time is right. Here, cond
matters only when the assignment is guard by a timing control (by E-CNB); for other cases, we
simply put ✓ in the event (by E-NB). For convenience, we define function genUpdEv((id, 4, 2), f, C)

to generate controlled update events for (id, 4, 2). By E-BA, when the store is changed from f to f ′

by blocking assignments, we call trigger(Dnb, (f, f
′)) to trigger the updates of conditions in Dnb.

After updating Dnb by function trigger(), rule Step-NB comes into the play. Specifically, function
peekActive(Dnb) extracts controlled update events, whose condition is satisfied like (id, bv,✓), from
Dnb and converts them to sequential blocking assignments like id = bv; . . . . Finally, the resulting
assignments are handed over to a new process for execution, and delActive(Dnb) is used to deleted
controlled update events that have been handled by peekActive(Dnb). In Step-NB, we use reduction

relation
=1
→ instead of→ on configurations to ensure that the assignments are not executed until

the end of the time step, and we will further explain
=1
→ in Section 3.7.

Note that in function peekActive(Dnb), the controlled update events are converted to assignments
following the order in which they were added to Dnb. This order is essential as Verilog specification
says that “the order of the execution of distinct nonblocking assignments to a given variable shall be
preserved.” [ver 2006]. If the order cannot be preserved, we may fail to ensure the determinism
about the result of multiple nonblocking assignments to the same variable as mentioned in Table 1.
For instance, executing code a ⇐ #4 0; a ⇐ #4 1; should result in 0 having a value of 1 after four
time steps as per the specification. If peekActive(Dnb) transformed the update events into parallel
assignments, e.g., a = 0 ∥ a = 1, non-determinism in scheduling could cause a to have a final
value of 0 or 1. In _+ , queue Dnb and rule Step-NB preserve the order of controlled update events,
allowing us to deterministically resolve the final value of a as 1.
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(E-ContUpdate)

DU = {aid ↦→ (id, bv,✓) } ∪D′
U f′

= f [aid ↦→ bv ] bvA = resolve(id, f′, ^, U)

f′′
= f′ [id ↦→ bvA ] V′ = activate(V, (f, f′′)) D′

nb
= trigger(Dnb, (f, f

′′))

f, V,Dnb,DU → f′′, V′,D′
nb
, sched(D′

U , U, (f, f
′′), C )

sched(DU , U, (f, f
′), C ) = merge(DU , signal(U, (f, f

′), C ))

merge(DU ,D
′
U ) = {aid ↦→ (id, bv, cond) | D′

U (aid) = (id, bv, cond) ∨ (aid ∉ keys(D′
U ) ∧DU (aid) = (id, bv, cond)) }

signal(U, (f, f′), C ) = {aid ↦→ genUpdEv( (id, 4, 2), f′, C ) | U (aid) = (id, 4, 2) ∧ J4Kf ≠ J4Kf′ }

drVals(id, f, U) = {f (aid) | U (aid) = (id, _, _) ∧ aid ∈ keys(f) }

Fig. 9. Semantic rules and functions for continuous assignments.

3.6 Continuous Assignments

In Verilog, continuous assignments are used to model combinational logic, and in _+ , they are
represented by assign items of the form assign 23? id = 4 as defined in Figure 5. The semantics
of continuous assignments is that when the value of 4 changes, the new value will be used to
update 83 at the current time step. If a delay control 23 is given, then the update will be delayed,
and triggered later as time step advances (discussed in Section 3.7).
To model continuous assignment in _+ , we set two maps U and DU in runtime configuration to

record the assign-related information. Specifically, U maps each assign item (identified by aid) to a
triple (id, 4, 2), where id and 4 stand for the LHS net and the RHS expression of the assignment, and 2
is the delay control. Accordingly, DU maps an assign item to a controlled update event (id, bv, cond),
where id is the LHS net of the assignment, and bv is the new value (evaluated from 4 in U), and
cond matters only when the delay control 2 is not ⊥ (otherwise, we simply put ✓).
PP-CA and PP-CCA in Figure 6 initialize U by assigning a unique identifier to each assign item

and record its information in U . To maintain DU , we define a function sched(DU , U, (f, f
′), C) (in

Figure 9) to generate controlled update events from assign items U whose LHS nets need updating
as RHS values have been changed (J4Kf ≠ J4Kf ′), and then merge the events into DU by function
merge(). sched() is called every time the store f changes, e.g., by E-BA in Figure 8.
E-ContUpdate in Figure 9 defines how to process a controlled update event (id, bv,✓) of

aid in DU . This rule looks a bit complicated because it has to deal with multiple drivers problem
introduced in Section 3.2. Specially, for the update event (id, bv,✓), we first set bv for aid in store f
to maintain RHS value of each assign item (associated with aid) in the store. Then we call function
resolve(id, f ′, ^, U) to compute the new value for id, i.e., bvA . resolve() collects the RHS values of
all assign items in f ′, whose LHS net is id, and resolves possible conflicts among these values,
based on the resolution function specified by the net kind ^ (id) and function drVals(id, f, U) that
collects all driving values of id. The formal definition of resolve() is omitted, and please refer to
Verilog specification and our artifact for details.

Note that unlike nonblocking assignments, we use a map (DU ) instead of a queue store the update
events to be handled. This is to avoid the inertial delay problem mentioned in Table 1. Verilog
semantics specify an inertial delay model for continuous assignments, as stated in [Gordon 1995].
If a previously-generated update event from a continuous assignment has not been executed due to
a delay, and a new update event for the same net is generated, then the previously-generated event
should be overwritten.

3.7 Scheduling Semantics

The scheduling semantics defines how a Verilog program is simulated, and each simulation cycle
can be divided into fours phases executed in order (as introduced in Section 2.2), which are modeled
by the rules in Figure 10:
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(Sched-Norm) (Sched-Zero) (Sched-NB)

conf → conf ′

conf
+
→ conf ′

conf ↛ conf
0
→ conf ′

conf
+
→ conf ′

conf ↛ conf
0
↛ conf

nb
→ conf ′

conf
+
→ conf ′

(Sched-One) (Step-Time)

conf ↛ conf
0
↛ conf

nb
↛ conf

1
→ conf ′

conf
+
→ conf ′

C ′ = C + △ V′ = activate(V, C ′) D′
nb

= trigger(Dnb, C
′)

D′
U = trigger(DU , C

′) (V,Dnb,DU , C ) ≠ (V′,D′
nb
,D′

U , C
′)

V,Dnb,DU , C
△
→ V′,D′

nb
,D′

U , C
′

trigger(DU , ev) = {aid ↦→ (id, bv, onEvent(cond, ev)) | DU (aid) = (id, bv, cond) }

Fig. 10. Schedule semantics and time advancement.

(1) Executing concurrent processes and continuous assignments (Sched-Norm);
(2) Unblocking zero-delayed processes and activating zero-delayed events (Sched-Zero);
(3) Executing nonblocking assignments (Sched-NB);
(4) Advancing time steps to unblock delayed processes and activate delayed events (Sched-One).

Now we can define the execution semantics of _+ as reduction relation
+
→, which is derived from

reduction relations →,
△
→ (△ denotes number of advancing time steps), and

nb
→. We use conf ↛,

conf
△
↛, and conf

nb
↛ to denote that no reduction→,

△
→, and

nb
→ can be applied on conf .

Reduction→ has been defined throughout in Section 3. Reductions
0
→ and

1
→ are defined by Step-

Time, which triggers update events with delay controls in Dnb and DU via functions trigger(Dnb, C
′)

and trigger(DU , C
′). This behavior is the same as how blocking assignments trigger event controls as

explained in Section 3.5.1, so we do not repeat it here. Specially,
0
→ handles zero-delayed processes

and events. The semantics of
nb
→ (for phase (3)) have been defined in Step-NB (Figure 8), and by

Sched-NB, it is executed only when no reductions for phases (1) and (2) are applicable. By rules
in Figure 10, phase (8) is executed after phase (8-1), except that phase (2)–(4) may unblock some
processes, then the scheduling returns to phase (1) to execute the unblocked processes.

Frozen Simulation. According to the scheduling semantics, time step in Verilog advances by one
only when no processes can progress any further. Hence, if a process enters a dead loop, time step
will not advance, effectively freezing the simulation. Therefore, it is incorrect to write code such as
always c = a + b to implement an adder. Unfortunately, we still found this error in the test suite
from Icarus Verilog.

Real-world Simulator Implementations. Although the Verilog specification precisely defines the
scheduling semantics, some simulator implementations make their own assumptions about sched-
uling, such as using non-preemptive scheduling to address unusual behaviors in Verilog programs
under specified semantics. Unfortunately, this can cause the same Verilog program to exhibit
different behaviors across different simulators, or even lead semantically equivalent programs to
behave differently on the same simulator, as mentioned in Table 1. _+ faithfully follows Verilog’s
specification on scheduling to avoid such issues, which are further discussed in Section 5.1.

4 TOTALITY AND CONFORMANCE OF _+

The practical usefulness of _+ is built upon two properties that are highlighted in previous research
work of core languages [Guha et al. 2010; Politz et al. 2013]:

• Totality: Desugaring converts all Verilog source programs into their corresponding _+ .
• Conformance: Desugared programs yield the same results as the original Verilog source.
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Totality demonstrates that _+ can work with real-world Verilog programs. Conformance ensures
that _+ is reliable and trustworthy. However, the conformance property cannot be proven due to the
absence of a complete formal specification for Verilog’s behavior. To tackle both properties, we follow
the testing strategy adopted in existingwork for Python [Politz et al. 2013] and JavaScript [Guha et al.
2010] as depicted in Figure 1. This method treats real-world simulators as the closest approximation
of the missing Verilog’s complete formal specification. By implementing _+ and comparing its
results with those of simulators on sufficient number of Verilog programs, we can test _+ ’s totality
and conformance. Below, we discuss the key aspects of implementing and testing respectively.

4.1 Implementation

We developed _+ in Java, which comprises about 27,000 lines of code (excluding comments). Our
project mainly consists of three parts: a general-purpose Verilog front end that converts Verilog to
an IR (about 15,000 lines of code), a desugar function that further transforms the IR to _+ (about
2,000 lines of code), and the _+ part (about 8,000 lines of code).

Front End. Verilog supports meta-level language features, such as generate and parameter, to
elaborate instantiations of modules. To represent such instantiated code, we require an elaborate
process. This involves following the specification to “bindmodules to their instances, build themodel
hierarchy, compute parameter values, resolve hierarchical names, process generate constructs, and
establish net connectivity”. To our knowledge, these meta-features of Verilog are overlooked by
other semantic works in Table 2, despite their widespread use in the real world; thus, we support
them to enhance the totality of _+ .
Consequently, the front end is organized into two phases. The first phase involves parsing

Verilog programs into abstract syntax trees (ASTs) based on ANTLR [Parr 2013]. Subsequently,
in the second phase, these ASTs are transformed into their elaborated versions, represented by a
specialized IR designed by us.

Desugaring. The desugar function involves desugaring Verilog’s various features on the IR, and
converting IR into the representation of _+ . Below, we highlight several important operations in
desugaring.

• We make explicit any implicit type conversions in context-determined expressions, which
addresses the pitfall discussed in Section 3.3.

• We unify the representation of bit vectors. Verilog allows for bit vectors to be represented
in both big-endian and little-endian forms, and negative indices are also permitted. We
transform all bit vectors into little-endian representation and shift their ranges to ensure
their indices start from 0.

• We process all forms of data declarations, which can be a complicated process due to the
flexibility of Verilog’s data declaration rules. In Verilog, data identifiers can be declared
separately from their other information, such as data types, or used without prior declaration.

• We process the alias semantics under inout port connections by replacing all occurrences of
aliased nets with a fresh uniformed name. To our knowledge, no existing semantics work
handles inout port connections.

_+ . The _+ part includes a parser based on ANTLR [Parr 2013] for parsing _+ ’s textual represen-
tation, data structures representing _+ ’s syntax, and the faithful implementation of semantic rules,
based on which our interpreter is implemented.

To make our interpreter applicable to real-world programs, we have modeled numerous system
tasks and functions that are frequently encountered in real-world programs, such as $monitor
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Table 3. The distribution of features in the first test suite. Since a test case may contain multiple features, we
count them separately in each feature category. Feature abbreviations can be found in Table 1.

BV N CE TC BA NBA PCA AFC CA SCH CONN LT STF GATE Total

# of Test Cases 824 342 730 542 653 83 44 24 293 539 303 105 824 28 824

(enabling variable change tracing), $display (permitting the printing of formatted messages), and
$random (enabling random data generation for testing), and so on.

4.2 Testing

To test the totality and conformance of _+ , we employ two distinct test suites, each evaluating _+
from different aspects:

• The first test suite comprises the test cases that comprehensively cover various language fea-
tures. They are sourced from Icarus Verilog [Williams 2023], one of the two most widely used
open-source simulators for Verilog. Compared to the other simulator, i.e., Verilator [Snyder
2023a], Icarus Verilog offers much better support on resolving language features (Verilator
fails to pass 100+ test cases of Icarus Verilog in our experiment, so we will not describe
Verilator in the rest of this section). We exclude test cases that contained specific compiler
directives and the features not included in the standard specification of Verilog [ver 2006],
such as Icarus Verilog’s specific extensions, non-standard system functions, as well as the rare
features that _+ does not support, as explained in Section 1. In total, we obtained 824 test
cases, each residing in a separate file and collectively comprising about 28,000 lines of code.

• The second test suite is derived from real-world programs that tightly combine language
features. It includes a suite of unit tests (including the one using the largest test data) from
OpenPiton [Balkind et al. 2016], an open-source processor, and additional test cases primarily
sourced from Altera Corporation, encompassing a range of designs such as an rv32i CPU,
with code sizes varying from hundreds to thousands of lines. Note that not all unit tests
from OpenPiton are included in our suite: we have excluded tests that utilize configurations
specific to FPGA platforms and those that report configuration errors due to missing files.

Totality. Table 3 shows the distribution of all the representative features of Verilog, as summarized
in Table 1, within our first test suite. It is important to note that since a test case may utilize multiple
features, the sum of cases for each feature does not necessarily equal the total number of test cases.
As explained in Section 1, no existing semantic work has been able to handle these features as
comprehensively as _+ . In our experiment, _+ ’s implementation successfully converted all those 824
test cases written in Verilog to _+ , demonstrating its good totality for desugaring all representative
features of Verilog.
In the second test suite, the tests from OpenPiton were not directly compatible with our fron-

tend due to the presence of compiler directives and specific dialects used by various commercial
simulators. To address this incompatibility, we utilized the tool vppreproc [Snyder 2023b] to process
any compiler directives and then manually replaced those specific dialects with their standard
Verilog equivalents. After completing this process, our implementation successfully converted all
those test cases of OpenPiton to _+ ; moreover, the other real-world programs in our second test
suite mentioned earlier were also converted successfully, showcasing _+ ’s good totality in handling
real-world programs.

Conformance. During our testing using the first test suite, we observed cases in which _+ failed to
pass due to semantic bugs in Icarus Verilog, indicating a failure on the part of Icarus Verilog to adhere
to the standard specification of Verilog. We will examine this issue in Section 5.1. Additionally,
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some failed cases were found to be caused by ambiguities in the Verilog specification, leading to
inconsistent outputs across different simulators. This will be discussed in Section 5.2.
In addition to the above cases, _+ only fails to pass nine cases out of the 824 cases presented

in Table 3. However, upon further investigation of the root causes for the failed test cases, we
discovered that they do not necessarily indicate non-conformance of _+ with Verilog. After careful
analysis, we identified the root causes of those failed test cases, which can be categorized as follows:

• Seven test cases were written erroneously by their developers. For instance, upon inspecting
one of the tests, we discovered that the variable r should hold bit values of either 0 or x, but
the developer checked it with the assertion “r==1”, mistakenly using “==” instead of “===”.
This changes the semantics under which 0 would be considered a wrong result for r. (Note
that the difference in semantics between “===” and “==” can be complicated when combined
with the value x in Verilog, so let us ignore it and focus on its effect instead). Icarus Verilog can
pass this test as it always outputs x for r due to its limited scheduling strategy as introduced
in Section 5.1.2, while _+ faithfully follows the specification’s scheduling, resulting in 0 being
produced for r under some of its scheduling, causing the test to fail.

• Two test cases do not pass _+ ’s type checker. The Verilog specification prescribes issuing
warnings when certain implicit conversions or coercions occur. _+ implements a more
rigorous type checking process during compilation, leading to the rejection of programs that
use implicit port kind coercion and dissimilar net types resolution. Popular Verilog source
code linting tools typically report similar warnings to be fixed, and thus we argue that it is
advisable to eliminate such warnings during development to avoid unexpected behavior.

It’s worth noting that Icarus Verilog actually encountered three failures out of the 824 cases due
to a known bug resulting from an incorrect implementation of procedural continuous assignment.
In contrast, _+ successfully passed these cases.
Based on the explanation outlined above, it is reasonable to conclude that _+ conforms with

Verilog in all the representative features we have tested.
Additionally, _+ successfully passed all the test cases from our second test suite involving real-

world programs. For example, _+ completed one unit test with the largest test data from OpenPiton
in approximately one hour on a laptop, generating several megabytes of output over approximately
2,000,000 clock cycles.

5 USEFULNESS OF _+

The semantics and implementation of _+ offer various utilities in a range of contexts. Specifically,
in this section, we highlight how _+ uncovers real-world semantic bugs that are often perplexing
to Verilog programmers and are even overlooked by popular Verilog simulators (Section 5.1).
Additionally, we show how _+ exposes ambiguities in Verilog’s standard specification (Section 5.2),
and discuss how _+ and its interpreter can facilitate other applications, such as exploring a circuit’s
state space and building a concolic execution tool for Verilog (Section 5.3).

5.1 Detect Real-world Semantic Bugs

Thanks to the more accurate modeling of Verilog’s semantics by _+ , along with its properties of
totality and conformance, we can rely on _+ to detect semantic bugs in Verilog by comparing its
results with those of other real-world simulators. In other words, if a test passes on other simulators
but not on _+ ’s interpreter, it is possible that the compared simulator has a semantic issue, except
in cases as explained in Sections 1 and 4.2.
As a result, _+ identified real-world semantic bugs that were even erroneously interpreted

by the two most popular open-source Verilog simulators, Icarus Verilog [Williams 2023] and
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Verilator [Snyder 2023a] (as Icarus Verilog has stricter semantic treatment compared to Verilator ,
we will only use Icarus Verilog for illustration for the remainder of the paper). These bugs fall into
three categories including context-determined expressions, hidden data races, and lost of newest
results. Due to limited space, we illustrate the first two kinds of semantic bugs in this section, and
we will describe the remaining bugs in the artifact.

5.1.1 Context-determined Expressions. Evaluating context-determined expressions is a persistent
issue that continuously disturbs Verilog programmers and developers of language tools as discussed
in Section 3.3. Let us consider a real-world example about using bit shifts. This case concerns the use
of system function $signed() in context-determined expressions, which can lead to unexpected
implicit conversions and cause confusing behavior by shift operation. Specifically, programmers
often write the following code to express the intent of applying an arithmetic or logical shift right
operator to bit vector val, depending on the ctl signal:

ctl ? $signed(val)>>>offset : val>>offset

Let us assume that ctl, val, and offset are assigned the values 1’b1, 4’b1010, and 4’b0001,
respectively. In this case, ctl evaluates to true, and the expression $signed(val)>>>offset will
be evaluated. Intuitively, we might assume that val is of a signed type, and therefore the one-bit
right shift operation should retain the high bit, which is 1. Consequently, the expression should
evaluate to 4’b1101. However, this is incorrect, and the correct result should be 4’b0101, where
the high bit is 0 instead of 1. Such incorrect evaluation has persisted in the old versions of Icarus
Verilog for an extensive period; moreover, we can see a frequent recurrence of a similar question
on website Stack Overflow, which continues to confound Verilog programmers even today.

This is because the influence of context type in this case has been ignored. As per the specification
of Verilog, the two subexpressions, i.e., $signed(val)>>>offset with a signed 4-bit type and
val>>offset with an unsigned 4-bit type, have an impact on each other’s context type. Therefore,
the final context type is their least common type, which is an unsigned 4-bit type. Consequently, this
context type is then applied as the context type of $signed(val), which converts $signed(val)
to an unsigned value. Thanks to _+ ’s accurate modeling of semantics, it is able to identify this
confusing issue and produce correct result for it.

5.1.2 Hidden Data-races. One problem that is often overlooked in Verilog simulators is data races,
which occur when multiple processes access the same variable without proper synchronization. In
this section, we illustrate a case where Icarus Verilog hides a potential data race.

1 always @(*) c1 = a + b;

2 assign c2 = a + b;

3 initial begin

4 a = 1; b = 2; #0;

5 if (c1 == c2) $display("same");

6 else $display("different");

7 end

Consider the example program on the side, which
models the same combinational logic using both the
always @(*) statement (line 1) and the continuous
assignment (the assign statement on line 2), where
a, b, and c1 are 32-bit variables, while c2 is a 32-bit
net. Verilog programmers are often taught that the
effects of the first two lines of code are equivalent, and
thus c1 should equal c2, and “same” will be displayed.

However, this is not always the case, as both “same” and “different” outputs can be displayed in
this example. This occurs because the process created by the always block has data races with the
process created by the initial block, which could lead the program to print "different". Below,
we give one such schedule. For simplicity, we denote the two processes created by the always block
and the initial block as %1 and %2, respectively.

(1) Execute @(*) in %1 so that %1 is blocked and waits for any changes in the values of its listening
variables, a and b. (wildcard * means it listens to changes in either a or b).
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(2) Execute a = 1 in %2. The event that a’s value has been changed is then sent to other listening
variables, such as * in %1.

(3) As a’s value has been changed, a + b in %1 can be evaluated, where a has the value of 1 and
b has the default value of x, resulting in a value of x that is then assigned to c1 in %1.

(4) Execute b = 2 in %2, and then the zero delay (#0). Executing #0 will block the current process
%2, allowing the schedule to execute other processes and continuous assignments.

(5) Execute @(*) in %1 again to listen to changes in a and b (always block is actually a loop).
However, it misses the change in b’s value in the last step. Hence, the value of c1 remains x.

(6) Execute the continuous assignment and c2 is assigned the value of a + b = 1 + 2 = 3.
(7) Execute the previously blocked %2 to compare the values of c1 and c2. As x does not equal 3,

“different" is displayed using the $display system task.

According to the specification of Verilog, the code above should be able to print “same” or
“different” given different schedules, and we can utilize _+ to generate schedules to output either
result; however, Icarus Verilog can only output “same” in this case, which violates the language
specification and hides the potential data races. This is because Icarus Verilog always executes
the @(*) of processes first and only supports non-preemptive scheduler. In the above example,
after compulsively executing @(*) of %1, Icarus Verilog must execute a = 1 and b = 2 incessantly
in %2 as it is not allowed to be preempted until it releases the schedule proactively (for example,
by executing zero delay to block itself in our example). As a result, both c1 and c2 equal 3 and
“same” will always be displayed. Icarus Verilog is designed to guide executions by allowing only
a subset of scheduling, intentionally hiding potential data races from programmers on the basis
that synthesized circuits do not contain data races. However, because existing simulators cannot
completely hide data races, we argue that Icarus Verilog’s limited scheduling for hiding data races
may introduce issues during simulation that can confuse programmers and complicate debugging.
For the example above, Icarus Verilog forces execution of @(*) first to always display “same”

(indicating no data race). But when we reorder the initial process and always block, and make
@(*) the one that explicitly enumerates the listening variables’ posedge/negedge, “different” will
be displayed (indicating the presence of data race). However, according to the specification and
intuition, programmers expect that the code in each orderings should have a chance to display
“different”; nevertheless, Icarus Verilog outputs unexpected results by adding constraints for
scheduling, violating the specification and confusing programmers. This also adds to the burden of
debugging, as programmers may be unaware of whether unexpected results are due to data race
hiding. Therefore, we advocate scheduling as per the language specification to expose data races. If
possible, we propose taking it a step further by advocating for Verilog to provide language support
that unifies the semantics of always blocks for combinational logic, and continuous assignments, for
addressing any potential data races. This will result in consistent behavior across various simulators
and simplify the process of reasoning about code behavior for Verilog programmers.

5.2 Expose Ambiguities in Specification

Compared to software languages, the specification of Verilog contains more unclear definitions and
descriptions. With the help of _+ , we have been able to identify seven cases with certainty where
inconsistent results are produced by different simulators due to the ambiguities in specification.
These cases cover four types of scenarios including timing-control assignments, procedural con-
tinuous assignments, unmatched port connections, and even the syntax regarding named events.
Due to limited space, we explain one simple example about timing-control assignments (the code is
shown below), and the remaining cases will be described in the artifact.
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wire [1:0] a;

assign #1 a = 2'b10;

assign a = 2'b01;

initial begin

#0 $display("%d", a);

end

The code shows that net a is assigned by two drivers, one with
a delay control (#1) and one without. Due to the concurrent sched-
uling of Verilog, the two assign statements and the $display

statement are executed in parallel. According to the specification,
“The default initialization value for a net shall be the value ‘z’. Nets
with drivers shall assume the output value of their drivers”. However,

the specification does not clarify what should happen if the driver’s output value is not available
during initialization. In our case, during time step zero, the first assign statement will not drive
the value 2’b10 to net a until the next time step due to the delay of #1. As a result, _+ assumes that
net a will be assigned the value ‘z’. Further because the second assign statement assigns the value
2’b01 to net a in parallel, a multiple-driver problem occurs, leading to value 1 being displayed as
explained in Section 3.2. However, upon inspection of Icarus Verilog’s implementation, we found
that Icarus Verilog assumes that the value x will be assigned to net a; thus, the final value displayed
is ‘x’. The inconsistent results are due to the ambiguity in the specification.
After reviewing our experience, we have realized that the Verilog specification appears to

be less clear than that of software languages. Our testing process may only uncover a certain
portion of these ambiguities and we highly recommend a thorough refinement of Verilog’s standard
specification for disambiguations.

5.3 Facilitate Other Applications

Developing proofs and tools for a core language that captures the essence of language % is much
easier than addressing the full details of % itself [Krishnamurthi 2015]. Just as the core languages for
JavaScript [Guha et al. 2010] and Python [Politz et al. 2013], _+ is such an essence-capturing language
for Verilog that possesses the desirable properties of totality and conformance, as demonstrated
in Section 4.1. As a result, the advantage of using _+ to facilitate proof development is easy to
understand: many of the complicated features of Verilog’s semantics have been desugared and
flattened, possibly making proofs significantly shorter for _+ than for Verilog; in this section, we
briefly discuss how we utilize _+ and its interpreter to develop potential tools more easily.

5.3.1 State-Space Explorer. Using simulators like Icarus Verilog, Verilog programs are scheduled
along a specific execution path for stability. However, since Verilog’s concurrency control is feature-
rich, selecting a specific (or subset of) scheduling in simulation may obscure potential issues. For
instance, what if a program passes in Icarus Verilog but not in another simulator? (this issue may
remain undetected if only Icarus Verilog is used). To address this issue, one possible solution is to rely
on a Verilog state-space explorer that can traverse all possible execution states of all schedulings.
With such explorer, it can be determined whether the program can pass only when following Icarus
Verilog’s limited scheduling, exposing a fault in Icarus Verilog, or if it can pass through all schedules,
verifying the correctness of Icarus Verilog (and exposing the fault of the other simulator).

_+ offers a scheduling with monotonicity [Vafeiadis et al. 2015] and fairness by accurately
adhering to the specification of Verilog; moreover, we have encoded _+ ’s interpreter with auxiliary
APIs that enable the convenient construction of initial states and computation of all possible next
states allowed by _+ ’s semantic rules for any input Verilog program (the term “state” refers to the
configuration defined in Section 3). With this facilitation, we were able to effortlessly construct
a Verilog state-space explorer by appending just over 100 lines of code to the interpreter of _+ .
This explorer aided in identifying data race issues as described in Section 5.1.2, and enabled us to
promptly confirm concurrency-related issues across various simulators. We use the state-space
explorer as necessary, and based on our experience, it can take anywhere from a few seconds to
several minutes to complete. For instance, for a test case with 40+ lines of code containing around
50,000 schedules, the state-space explorer took 11 minutes to run.
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5.3.2 Concolic-Execution Tool. Concolic execution [Godefroid et al. 2005] is a useful testing ap-
proach for guiding executions to cover more software code. Similarly, there is related work for
hardware [Ahmed et al. 2018; Meng et al. 2022]. Its basic working mechanism is as follows: given
an input, Verilog programs are executed and their execution traces are extracted and collected to
generate constraints; symbolic execution traces are then created, followed by selecting a constraint
for flipping to explore other branches. Subsequently, the flipped constraint is solved to generate
new input for guiding new executions.

After developing our concolic-execution tool, we discovered that creating such a tool on top of
_+ and its interpreter required significantly less effort than building on top of traditional simulators
like Icarus Verilog, as noted in previous work [Ahmed et al. 2018]. The main reasons are as follows.

Extracting execution traces from simulators such as Icarus Verilog and Verilator can be a compli-
cated task, as users are unable to directly obtain traces through simulator interfaces. As a result,
previous work [Ahmed et al. 2018] has required the insertion of monitoring code into the program
to capture execution information, which can only be extracted once the simulation is complete. In
contrast, the concise semantics of _+ and its extensible interpreter implementation have enabled
us to obtain real-time execution information with minimal effort. By adding just a few dozen lines
of code to the interpreter, we can capture information such as the value of a variable at a particular
time or the statement being executed at that moment.

Generating constraints with constraint solvers like Z3 [de Moura and Bjørner 2008] often requires
strict adherence to expression types. For example, Z3’s arithmetic operations require bit vectors of
equal width as operands. Verilog, as a weakly-typed language, necessitates manual handling of
various type conversions when generating constraints. In contrast, all primitive functions in _+
are strongly-typed and feature automatic type conversion (see Section 3.3), making the process of
generating constraints from _+ statements significantly easier. Moreover, _+ has inlined all modules
and functions, reducing the need for instantiating modules and invoking functions when generating
constraints for _+ programs, which further simplifies the process of constraint generation.
We enlisted the help of a senior undergraduate student to implement a concolic-execution tool

using _+ ’s interpreter by referencing _+ ’s semantics (he was not familiar with Verilog previously).
As of the time of writing, the tool is functionally equivalent to similar work [Ahmed et al. 2018]
and required only approximately 100 working hours to complete. Furthermore, the tool is scalable
to the largest Verilog design (about 8,000 lines of code) in our real-world program testbench (the
largest benchmark program in the LLHD paper [Schuiki et al. 2020] contains about 4,000 lines of
code), which takes approximately 4 minutes to run a cycle concolically on the student’s laptop,
and the time increases linearly with the number of cycles. Once again, this result demonstrates the
potential value of _+ and reinforces Krishnamurthi [2015]’s perspective that research groups with
limited resources can leverage core languages (like _� ( [Guha et al. 2010], _c [Politz et al. 2013],
and our _+ ) to apply their tools to real programs, enhancing the utility of their research.

6 RELATED WORK

Operational Semantics for Verilog. Our focus is on discussing operational semantics for Verilog,
similar to our own, as summarized in Table 2. Other styles of semantics for Verilog are discussed in
the next part.
The earliest work in this area, [Gordon 1995], discusses the semantic challenges of commonly-

used Verilog features, but only provides informal descriptions. Other early works, such as [Fiskio-
Lasseter and Sabry 1999; He and Xu 2000; He and Zhu 2000], do not cover several key features of
Verilog, such as continuous assignments and nonblocking assignments.

Later work, [Dimitrov 2001], covers the key features but falls into almost all of the pitfalls
discussed in this paper, as depicted in Table 1. Furthermore, their approach to modeling Verilog
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is not scalable to support missing Verilog features (e.g., advanced flow control), in the sense that
supporting those features would require rewriting most of their semantic rules.
The most complete work on Verilog semantics is [Meredith et al. 2010], which is based on the

K framework [Meseguer and Rosu 2007] and covers many representative features discussed in
this paper. However, it fails to handle several pitfalls. Firstly, they do not model the x and z bits in
Verilog. Secondly, they do not fully capture the essential differences between nets and variables,
resulting in their semantics being unable to handle the problem of multiple drivers. Thirdly, they do
not model repeat event controls, procedural continuous assignments, and advanced flow controls,
which are hard to extend based on their semantic core. Finally, they fail to model the alias semantics
under the inout port of modules.

Recent years, Lööw and Myreen [2019] propose Verilog’s formal semantics as to build a verified
translator from HOL functions to Verilog programs. However, their semantics is designed to only
model a synthesizable subset of Verilog that they focus on. In contrast, _+ aims to provide a complete
formal semantics for Verilog. It is worth mentioning that it is relatively straightforward to tailor
_+ to obtain the subset of Verilog used by Lööw and Myreen [2019], which demonstrates _+ ’s
potential in verification scenarios. In addition, _+ can assist Verilog tool developers in identifying
potential pitfalls comprehensively in advance and reduce problems when the scope of their tools is
extended. In fact, Lööw [2022] mentions that they have encountered a concurrency problem in
Verilog’s semantics that has temporarily sidetracked their ongoing Verilog semantics formalization
attempt. The concurrency problem has been addressed and discussed in our paper, and we expect
_+ to provide help to their work in this regard. Herklotz et al. [2021]’s later work on Coq extends
the semantics in Lööw and Myreen [2019], but its scope is still limited to the synthesizable Verilog,
and thus we do not delve into further discussion.
It is important to note that none of the above works is a core language like _+ , and thus, they

may lack certain advantages of an essence-capturing language, as discussed in Section 5.

Other Styles of Semantics. Apart from operational semantics, various other styles of semantics
have been explored for Verilog, including denotational semantics [Huibiao and Jifeng 2000], trace
semantics [Gordon 2002], and algebraic semantics [Zhu et al. 2008]. However, these works are
incomplete and fail to cover many key features of Verilog.
This does not mean other styles of semantics are not the right choice for modeling Verilog

semantics, as no definitive conclusion has been reached regarding this topic. However, we have
opted for the operational approach. We found that operational semantics offers two advantages in
the context of Verilog. Firstly, it provides an intuitive representation of Verilog’s stateful transition
system, making it easier for readers to grasp the language’s behavior. In our experience, papers
employing operational semantics for Verilog tend to be more accessible, and we have observed
many researchers adopting this approach to formally describe features and constructs of software
languages. Additionally, operational semantics provides a simplified model that aligns well with
the implementation of simulators adhering to the event-driven style scheduling semantics specified
in Verilog. This can help explain perplexing behaviors encountered when using those Verilog
simulators. We guess that this preference for operational semantics in previous work on core
languages, such as _� ( [Guha et al. 2010] and _c [Politz et al. 2013], may also be attributed to the
accessibility of operational semantics.
It is worth noting that process calculus may present an option for modeling the concurrency

in Verilog. However, no previous work has employed this approach to model Verilog semantics.
We acknowledge that process calculus may be better suited for modeling concurrent systems that
communicate through message passing, akin to real-world hardware where electronic components
communicate concurrently via messages transmitted on physical wires. However, Verilog models
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hardware using concurrent processes created by always blocks that communicate through shared
variables. Should _+ adopt process calculus, the desugared Verilog program might undergo signifi-
cant transformation, necessitating the conversion of shared variable communication to message
passing. Such a departure from the original Verilog model could potentially contradict our design
intention of enabling readers to smoothly transfer their understanding from _+ to Verilog.

Intermediate Representations. _+ can be used as an intermediate representation (IR) for simplifying
downstream tasks, but it significantly differs in design intention from existing Verilog IRs that
we have already known. Generally speaking, _+ , as a semantic work, places a higher priority on
completeness, aiming to present readers with a comprehensive understanding of the pitfalls in
Verilog, even if it entails introducing more constructs to achieve this goal. In contrast, other IRs
designed for Verilog prioritizes tractability by sacrificing some completeness beyond their specific
application scopes. The following paragraphs compare _+ with several popular IRs that cover three
typical application scenarios: synthesis, simulation, and verification.

LLHD [Schuiki et al. 2020] is a remarkable contribution that provides a multi-level IR for repre-
senting digital circuits throughout the entire design flow, e.g., synthesis, simulation, and verification.
It provides a few orthogonal primitives to model the complex features of Verilog that distinguish it
from software languages, such as timing controls and unique procedural statements, etc. However,
when these Verilog features are jointly used, LLHD falls short in fully supporting them, whereas
_+ excels.

For instance, LLHD lacks support for the mixed use of blocking assignments and nonblocking
assignments. It transforms both types of assignments into a unified static single assignment form,
which obfuscates the semantic distinction between them. This transformation works well for
scenarios where Verilog programs are synthesizable and the mixing of nonblocking and blocking
assignments is prohibited. However, as a semantic work rather than an IR, _+ strives to accurately
differentiate between blocking and nonblocking assignments, providing readers with formal se-
mantics to prove when these two assignment types can be safely unified. This way, language tools
like LLHD can confidently ensure that, within their scope, they can sacrifice some completeness
for greater tractability.

Another example relates to the support for timing controls and nonblocking assignments. LLHD
offers two orthogonal primitives: timing controls through wait instructions and nonblocking
assignments through static single assignments. In typical scenarios where timing controls and
nonblocking assignments are used, such as @(posedge clk) id <= e in Verilog, LLHD can
easily express them using a wait instruction followed by assignments. However, when these two
features are combined in a different manner, such as id <= @(posedge clk) e, LLHD cannot
express it according to the Verilog specification using the mechanisms provided by LLHD like
sequential composition of wait instructions and assignments. In contrast, _+ employs three non-
orthogonal primitives (2 := . . . , B := 2 B | id ⇐ 2? 4 | . . . ) to support all features related to
timing controls and nonblocking assignments, as depicted in Figure 5. This design decision in _+
highlights its prioritization of completeness as a semantic work, aiming to alert readers to potential
pitfalls in Verilog, such as the inability to desugar id ⇐ 2 4 . Developers who want to design an
IR like LLHD can then choose to delete the 2? in id ⇐ 2? 4 if they are confident that such forms
of nonblocking assignments will not occur. In doing so, the definition of _+ statements can be
simplified to B ::= 2 B | id ⇐ 4 | . . . which are precisely orthogonal, similar to LLHD.

FIRRTL [Izraelevitz et al. 2017] is another well-known IR commonly employed for synthesis and
simulation, which is used by Chisel [Bachrach et al. 2012], a popular hardware construct language,
and ESSENT [Beamer and Donofrio 2020], an impressive simulator optimized for speed. However,
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FIRRTL is a highly simple IR with lower expressiveness compared to LLHD, so we do not discuss it
further.

ACL2 [Kaufmann et al. 2013] is a language that was successfully applied to verify chips. The SV
library in ACL2 provides an IR called SVEX, which is designed to represent RTL designs and can be
used for simulation and verification. However, SVEX does not offer sufficient constructs to fully
support Verilog features as we do. If we were to find a reference point, SVEX’s expressiveness is
comparable to that of LLHD, whose difference with _+ has been explained previously.

Core Languages. The development of our Verilog semantics has been greatly influenced by related
works that define semantics using core languages. Notably, prior research on JavaScript [Guha
et al. 2010; Politz et al. 2012] and Python [Politz et al. 2013] has successfully defined semantics for
popular programming languages using core languages. These works demonstrate the advantages
of using core languages to facilitate tools and proofs and provide insights into the language.
Motivated by their experiences and findings, we designed _+ as a core language to describe a

more comprehensive semantics for Verilog and to clarify the pitfalls in its semantics. Additionally,
[Krishnamurthi 2015] emphasizes the opportunities and challenges of desugaring, which guided
our implementation of converting Verilog programs to _+ .
Furthermore, [Krishnamurthi et al. 2019] surveyed the use of core languages in defining se-

mantics for programming languages and argued that this approach has significant advantages
over approaches that rely on hundreds of semantic rules for bare languages. We believe that the
usefulness of _+ provides another evidence to support this argument.

7 CONCLUSION

The rapid growth of scaled and customized hardware has made the quality of hardware increasingly
important. Verilog, as the most popular hardware description language, its semantics plays a critical
role in shaping the correctness of any analysis, verification, and simulation tools for Verilog. This
paper presented _+ , a core language for Verilog that captures the essence of Verilog with much
fewer language structures, covering the most complete set of features to date, while addressing the
pitfalls in semantics. The implementation of _+ was comprehensively tested, and its usefulness was
demonstrated through various applications, such as detecting real-world semantic bugs, exposing
ambiguities in standard specifications, and facilitating tools for Verilog. While developing _+ , we
came to strongly feel the practical usefulness of having a core language for describing semantics,
echoing the sentiments of previous literature on software languages such as _� ( and _c . As a result,
we will open-source _+ , which contains about 27,000 lines of Java code (excluding comments), and
expect it to be advantageous for numerous potential applications in the future.
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the instructions provided in the accompanying README.pdf document within the artifact package.
Furthermore, we have provided supplementary material [Chen et al. 2023b] to elaborate the

syntax and semantics of the Full-_+ . You can access this supplementary material at the following
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