
1

A Principled Approach to Selective Context Sensitivity

for Pointer Analysis

YUE LI, Nanjing University, China and Aarhus University, Denmark
TIAN TAN

∗
, Nanjing University, China and Aarhus University, Denmark

ANDERS MØLLER, Aarhus University, Denmark
YANNIS SMARAGDAKIS, University of Athens, Greece

Context sensitivity is an essential technique for ensuring high precision in static analyses. It has been observed
that applying context sensitivity partially, only on a select subset of the methods, can improve the balance
between analysis precision and speed. However, existing techniques are based on heuristics that do not
provide much insight into what characterizes this method subset. In this work, we present a more principled
approach for identifying precision-critical methods, based on general patterns of value flows that explain
where most of the imprecision arises in context-insensitive pointer analysis. Using this theoretical foundation,
we present an efficient algorithm, Zipper, to recognize these flow patterns in a given program and employ
context sensitivity accordingly. We also present a variant, Zippere , that additionally takes into account which
methods are disproportionally costly to analyze with context sensitivity.

Our experimental results on standard benchmark and real-world Java programs show that Zipper preserves
effectively all of the precision (98.8%) of a highly-precise conventional context-sensitive pointer analysis
(2-object-sensitive with a context-sensitive heap, 2obj for short), with a substantial speedup (on average,
3.4× and up to 9.4×), and that Zippere preserves 94.7% of the precision of 2obj, with an order-of-magnitude
speedup (on average, 25.5× and up to 88×). In addition, for 10 programs that cannot be analyzed by 2obj
within a 3 hours time limit, on average Zippere can guide 2obj to finish analyzing them in less than 11
minutes with high precision compared to context-insensitive and introspective context-sensitive analyses.

CCS Concepts: • Theory of computation→ Program analysis.

Additional Key Words and Phrases: static analysis, points-to analysis, Java

ACM Reference Format:
Yue Li, Tian Tan, Anders Møller, and Yannis Smaragdakis. 2020. A Principled Approach to Selective Context
Sensitivity for Pointer Analysis. ACM Trans. Program. Lang. Syst. 1, 1, Article 1 (January 2020), 40 pages.
https://doi.org/10.1145/3381915

1 INTRODUCTION

Pointer analysis is a fundamental family of static analyses that compute abstractions of the possible
values of pointer variables in a program. Such information is essential for reasoning about aliasing
and inter-procedural control flow in object-oriented programs, and it is used in a wide range of
software engineering tools, e.g., for bug detection [Chandra et al. 2009; Naik et al. 2006, 2009],
security analysis [Arzt et al. 2014; Grech and Smaragdakis 2017; Livshits and Lam 2005], program
∗Corresponding author

Authors’ email addresses: yueli@nju.edu.cn, tiantan@nju.edu.cn, amoeller@cs.au.dk, smaragd@di.uoa.gr.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2020 Association for Computing Machinery.
0164-0925/2020/1-ART1 $15.00
https://doi.org/10.1145/3381915

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://doi.org/10.1145/3381915
https://doi.org/10.1145/3381915

1:2 Yue Li, Tian Tan, Anders Møller, and Yannis Smaragdakis

verification [Fink et al. 2008; Pradel et al. 2012], and program debugging and understanding [Li
et al. 2016; Sridharan et al. 2007].

For decades, numerous analysis techniques have been developed to make pointer analysis more
precise and more efficient, especially for object-oriented languages [Hind 2001; Smaragdakis and
Balatsouras 2015; Sridharan et al. 2013]. One of the most successful ideas for producing high
precision is context sensitivity [Milanova et al. 2002, 2005; Sharir and Pnueli 1981; Shivers 1991;
Smaragdakis et al. 2011], which allows each programmethod to be analyzed under different contexts,
to separate the static abstractions of different dynamic instantiations of the method’s variables and
thereby reduce spurious object flows. However, despite great precision benefits, context sensitivity
comes with heavy efficiency costs [Kastrinis and Smaragdakis 2013; Lhoták and Hendren 2006;
Oh et al. 2014; Tan et al. 2016, 2017; Xu and Rountev 2008]. One reason is that, with conventional
context-sensitivity techniques, every method in a program is treated the same, meaning that many
methods that do not benefit from context sensitivity are analyzed for multiple contexts redundantly.
As a consequence, too much space and time is consumed [Smaragdakis et al. 2014].

This naturally raises the question of whether it is possible to apply context sensitivity selectively,
only for the methods where it is beneficial to the overall analysis precision. It is far from trivial to
determinewhen a context-sensitive analysis will yield precision benefits (or conversely, to determine
when omitting context sensitivity for a method would introduce imprecision). This challenge of
effectively identifying precision-critical methods has been the focus of past work [Hassanshahi et al.
2017; Jeon et al. 2019; Smaragdakis et al. 2014; Wei and Ryder 2015]. Those techniques are based
on heuristics that seem to correlate with imprecision, but they do not provide a comprehensive
understanding of how and where the imprecision is introduced in a context-insensitive pointer
analysis. For example, introspective analysis [Smaragdakis et al. 2014] requires tuning multiple
parameters involving sizes of various kinds of points-to sets, and data-driven analysis [Jeong et al.
2017] is parameterized by a collection of syntactic features and relies on machine learning for
selecting good heuristics.

In this article, we provide a new more principled approach, named Zipper, to efficiently identify
precision-critical methods, based on insights about how imprecision is introduced. The key observa-
tion is that most cases in which imprecision arises in a context-insensitive pointer analysis fit into
three general patterns of value flows, which we call direct,wrapped, and unwrapped flows. Moreover,
we show that these three kinds of value flows can be recognized efficiently. Based on information
obtained from a fast, context-insentive pointer analysis, Zipper constructs a precision flow graph
(PFG) that concisely models the relevant value flow. The identification of precision-critical methods
can then be formulated as a graph reachability problem on the PFG and solved in negligible time,
compared to the pointer analysis itself.
Additionally, we provide a variant of Zipper, named Zippere , which also identifies efficiency-

critical methods, i.e., methods that are costly to analyze with context sensitivity. With Zippere ,
only the methods that are precision-critical but not efficiency-critical will be analyzed context-
sensitively. By applying context sensitivity only to the methods selected by Zipper or Zippere , a
pointer analysis runs significantly faster than conventional techniques that apply context sensitivity
indiscriminately to all methods, while retaining most of the attainable precision.

In summary, we make the following key contributions.

• We describe three general patterns of value flow that help in explaining how and where most
of the imprecision is introduced in a context-insensitive pointer analysis (Section 3).
• We present the Zipper approach to effectively recognize the three value-flow patterns and
thereby identify the precision-critical methods that benefit from context sensitivity (Section 4).

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

A Principled Approach to Selective Context Sensitivity for Pointer Analysis 1:3

Zipper can guide context-sensitive pointer analysis to run faster while keeping most of its
precision.
• We propose the Zipper express (Zippere) approach, which is developed on the basis of Zipper
but additionally considers analysis cost when selecting the methods to be analyzed with
context sensitivity (Section 5). Generally, Zippere can guide context-sensitive pointer analysis
to run extremely fast while being reasonably precise.
In contrast to other techniques that apply context sensitivity selectively, the Zipper and
Zippere approaches are based on a tangible understanding of imprecision and not on heuristics
that require non-transparent machine learning or other tuning of multiple and complex
analysis parameters.
• We provide an extensive experimental evaluation to evaluate the effectiveness of Zipper and
Zippere (Section 6).
– On average, Zipper reports that only 38% of the methods are precision-critical, which
preserves 98.8% of the precision (measured as average across a range of popular analysis
clients) for a 2-object-sensitive pointer analysis with a context-sensitive heap (2obj), for a
speedup of 3.4× and up to 9.2×. These results demonstrate that the three general patterns
of value flows indeed capture the vast majority of methods that benefit from context
sensitivity.

– On average, Zippere reports that only 14% of the methods are precision-critical but not
efficiency-critical, which preserves 94.7% of the precision for 2obj for a speedup of 25.5×
and up to 88×. In addition, for 10 programs that 2obj is unable to analyze within 3 hours, on
average, Zippere can guide 2obj to finish analyzing them under 11 minutes with still good
precision. Moreover, for some programs, Zippere -guided pointer analysis can even run
faster while being more precise than context-insensitive analysis. These results establish
Zippere as a new sweet spot in state-of-the-art pointer analyses, for making highly practical
trade-offs between efficiency and precision.

The present article extends and supersedes the paper by Li et al. [2018a] presented at the ACM
Conference on Object-Oriented Programming, Languages, Systems, and Applications 2018 (OOPSLA
2018). In comparison, this article contains the following major extensions (and reflects an updated,
more complete understanding throughout the rest of the text):
• We add a brief literature review of the history and current trends in context-sensitive pointer
analysis for Java (Section 2).
• We present the new pointer analysis variant, Zippere (Zipper express), which is extremely
fast with also good precision (Section 5).
• We investigate whether the precision-loss patterns of Zipper, as its theoretical foundation,
are general enough to effectively identify the precision-critical methods and thus preserve
the precision for other mainstream context-sensitivity variants, including call-site sensitivity,
type sensitivity and hybrid context sensitivity (Section 6.5).
• We conduct new experiments and extensively evaluate Zippere in terms of efficiency and
precision in practice (Section 6.6).

2 CONTEXT SENSITIVITY: A BRIEF REVIEW

In this section, we describe how context-sensitivity has evolved for Java pointer analysis from
purely improving precision to making good precision and efficiency trade-offs. In addition to giving
a brief review to discuss this important and intricate research topic, we also provide some necessary
background for our work. We focus on whole-program analysis, which is the main application
setting of this research topic [Smaragdakis and Balatsouras 2015; Sridharan et al. 2013].

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:4 Yue Li, Tian Tan, Anders Møller, and Yannis Smaragdakis

There are two major factors that control the precision of pointer analysis: how to abstract the
heap, and how to abstract the call stack. Compared with the few approaches on heap abstraction
for Java pointer analysis [Kanvar and Khedker 2016; Lhoták and Hendren 2003; Tan et al. 2017],
there is ample literature on stack modeling. Among the schemes for modeling the stack, in the
past years, context sensitivity has been considered as the most effective approach to improve the
analysis precision for Java programs [Lhoták and Hendren 2006] and has thus attracted the most
attention from researchers [Bravenboer and Smaragdakis 2009; Hassanshahi et al. 2017; Jeon et al.
2019, 2018; Jeong et al. 2017; Kastrinis and Smaragdakis 2013; Lhoták and Hendren 2006; Li et al.
2018b; Milanova et al. 2002, 2005; Smaragdakis and Balatsouras 2015; Smaragdakis et al. 2011, 2014;
Sridharan et al. 2013; Tan et al. 2016, 2017; Thakur and Nandivada 2019; Thiessen and Lhoták 2017].
We summarize the research work on context-sensitive pointer analysis into three categories

according to (1) the kinds of context elements, (2) the composition of context elements, and (3) the
selection of which parts of a given program to analyze with context sensitivity. Interestingly, the
techniques in different categories are orthogonal and can thus be combined for producing more
sophisticated pointer analyses.

Kinds of Context Elements. Many elements in a program, e.g., call sites, allocation sites, and types,
can be considered as context elements in context sensitivity. The earliest type of context elements for
Java pointer analysis inherits from the foundational approaches used both for C and for functional
languages [Sharir and Pnueli 1981; Shivers 1991] where context elements are call sites. We refer to
this style of context sensitivity as call-site sensitivity or call-string sensitivity [Smaragdakis and
Balatsouras 2015]. Unlike C programs, which often predominantly manipulate values in the stack,
Java programs have their inter-procedural data flow primarily through heap objects. Accordingly,
Milanova et al. [2005] proposed object sensitivity that uses allocation sites of receiver objects (the
program points where these objects are created) as context elements. Generally, object sensitivity
is more precise and efficient than call-site sensitivity, and is considered the most effective context-
sensitivity variant for producing good precision for Java. This conclusion has been extensively
validated in various pointer analysis frameworks [Kastrinis and Smaragdakis 2013; Lhoták and
Hendren 2006; Naik et al. 2006; Sridharan et al. 2013; Tan et al. 2016, 2017].

Despite being precise, object sensitivity is difficult to scale for large and complex Java programs,
which motivated the concept of type sensitivity [Smaragdakis et al. 2011]. In type sensitivity, the
context elements are the types of the classes containing allocation sites (as the latter would appear
in object sensitivity). This more coarse-grained choice of context elements enables type sensitivity
to run much faster by sacrificing some precision compared to object sensitivity. Today, call-site,
object, and type sensitivity are still considered the three mainstream context-sensitivity variants
for Java pointer analysis [Jeong et al. 2017; Smaragdakis and Balatsouras 2015; Tan et al. 2017].

Composition of Context Elements. With context sensitivity, each method can be analyzed in
multiple contexts, where a context consists of a list of context elements that model the run-time call
stack. For example, in call-string sensitivity [Sharir and Pnueli 1981; Shivers 1991], a context for a
methodm is composed by the context elements that are listed as [c1, c2, . . .], where c1 ism’s call
site, c2 is the call site of the method that contains c1, etc. To ensure termination of the analysis, a
k-limiting approach is typically followed: only the most recent k context elements are selected, and,
for efficiency, k is usually set to a very small value in practice. The call-string sensitivity approach
has been adopted in virtually all context-sensitive pointer analyses [Smaragdakis and Balatsouras
2015; Sridharan et al. 2013]. However, Tan et al. [2016] found that this conventional approach leads
to many context elements that are not useful for improving precision while occupying the limited
slots of context elements determined by k . To address this problem, Tan et al. [2016] presented an
approach to identify such redundant context elements. By skipping those elements, a resulting

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

A Principled Approach to Selective Context Sensitivity for Pointer Analysis 1:5

1
2
3
4
5
6
7

Object m(Object o){
 return o;
}
x1 = new A();
x2 = m(x1);
y1 = new B();
y2 = m(y1);

Fig. 1. Example of precision loss in context-insensitive analysis.

context-sensitive pointer analysis is guaranteed to be at least as precise as (practically, more precise
than) the conventional context sensitivity for the same choice of k . Similarly, Jeon et al. [2018]
developed a machine-learning approach to select context elements, leading to a context-sensitive
pointer analysis that is both reasonably efficient and precise.

Selective Use of Context Sensitivity. The conventional approach to context sensitive analysis
is to uniformly apply context sensitivity to every method in the given program. However, in
recent years, researchers have become aware that for some methods, context sensitivity does not
help improve the analysis precision but only introduces extra analysis cost. As a result, many
selective context-sensitive pointer analyses have been proposed and contribute to a promising
research direction for making practical trade-offs between precision and efficiency [Hassanshahi
et al. 2017; Jeon et al. 2019; Jeong et al. 2017; Li et al. 2018b; Smaragdakis et al. 2014]. In these
analyses, context sensitivity is applied only for the methods where it is deemed beneficial to the
overall analysis precision. However, finding such precision-critical methods is challenging. The
existing approaches to selective context-sensitive pointer analyses rely on heuristics [Hassanshahi
et al. 2017; Smaragdakis et al. 2014] or machine learning [Jeon et al. 2019; Jeong et al. 2017]. The
heuristic approaches require manual tuning of multiple complicated parameters. The machine
learning approaches are able to reveal some program features that may correlate with the analysis
effectiveness; however, the weaknesses of machine learning approaches are also well known: they
requires training and manual oversight during the tuning phase, they can behave unpredictably for
new inputs, and they offer few insights on why they work.

In this article, we present a more principled approach that explains when using context sensitivity
for a method is beneficial for precision, or conversely, when omitting context sensitivity introduces
imprecision.

3 CAUSES OF IMPRECISION IN CONTEXT-INSENSITIVE POINTER ANALYSIS

To address the challenge of how to predict which methods are precision-critical in a given program,
in this section, we introduce a general model to show that most of the precision loss in context-
insensitive pointer analysis for Java can be expressed in terms of three patterns of value flows, or
as combinations of these. Precision-loss patterns are independent of the chosen variant of context
sensitivity, such as call-site sensitivity [Sharir and Pnueli 1981; Shivers 1991], object sensitivity [Mi-
lanova et al. 2005], and type sensitivity [Smaragdakis et al. 2011]. We first introduce the three
precision loss patterns and then describe three corresponding concrete examples (Sections 3.1–3.3).
This characterization of precision loss provides the conceptual foundation for Zipper and Zippere
to identify the methods that will be analyzed with context sensitivity, as explained in Sections 4
and 5, respectively.
A context-insensitive analysis does not distinguish between different calls to a method but

merges the incoming abstract values (or points-to sets, in the case of pointer analysis) [Sharir and
Pnueli 1981]. Figure 1 shows a simple example. If method m is analyzed context-insensitively, then

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:6 Yue Li, Tian Tan, Anders Møller, and Yannis Smaragdakis

Direct
Flow

Wrapped
Flow

Unwrapped
Flow

IN Method

OUT Method

Value flow via assignments,
field load/store operations,
or method calls/returns

Objects

Fig. 2. Three general patterns of value flow that cause precision loss in context-insensitive analysis.

the two objects are mixed together, so the analysis conservatively concludes that both x2 and y2
may point to both the A object and the B object.

In contrast, a context-sensitive analysis would analyze m twice, corresponding to the two different
call sites, and thereby conclude that x2 can only point to an A object and y2 can only point to a B
object. The price of that extra precision is that the method needs to be analyzed multiple times,
so context sensitivity should ideally only be applied when the precision gain outweighs the extra
analysis time.

To characterize the relevant value flows, we first introduce some terminology.

Definition 3.1 (In and Out methods). Given a class C and a method M that is declared in C or
inherited from C’s super-classes, ifM contains one or more parameters thenM is an In method of
C , and ifM ’s return type is non-void thenM is an Out method of C . (In the example in Figure 1, m
is both an In and an Out method of the surrounding class.)

Definition 3.2 (Object wrapping and unwrapping). If an objectO is stored in a field of an objectW
(or in an array entry ofW , in caseW is an array), thenO is wrapped intoW . Conversely, if an object
O is loaded from a field of an objectW (or from an array entry ofW in caseW is an array), then O
is unwrapped fromW . (The simple example in Figure 1 contains no wrapping or unwrapping.)

With these definitions in place, we can describe the three precision-loss patterns as different
kinds of value flows, depicted in Figure 2.

Definition 3.3 (Direct flow). If, in some execution of the program, an object O is passed as
a parameter to an In method M1 of class C , and then flows (via a series of assignments, field
load/store operations, method calls, or returns) to the return value of an Out method,M2, of the
same classC , then we say the program has direct flow fromM1 toM2. (The example in Figure 1 is a
simple instance of this pattern.)

Definition 3.4 (Wrapped flow). If, in some execution of the program, an object O is passed as a
parameter to an In method M1 of class C and then flows to a store operation that wraps O into
an objectW , whereW subsequently flows to the result of an Out method,M2, of the same class
C , then we say the program has wrapped flow fromM1 toM2. More generally, the wrapped flow
pattern also covers value flow through multiple object wrapping steps, for example whenW is
itself wrapped into another objectW ′, which flows to the return value ofM2.

Definition 3.5 (Unwrapped flow). If, in some execution of the program, an object O is passed as a
parameter to an In methodM1 of classC and then flows to a load operation that unwraps an object
U from O , where U subsequently flows to the return value of an Out method, M2, of the same
class C , then we say the program has unwrapped flow fromM1 toM2. As in the previous definition,
unwrapped flow also covers value flow through multiple object unwrapping steps.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

A Principled Approach to Selective Context Sensitivity for Pointer Analysis 1:7

Direct Flow

name1

1 2 1 2

1class Person {
 String name; String id;
 void setName(String nm) {
 this.name = nm;
 updateID();
 }
 void updateID() {
 String newName = this.name;
 this.id = newName;
 }
 String getID() {
 String id = this.id;
 return id;
 }

1
2
3
4
5
6
7
8
9
10
11
12
13
14

}
// Usage Code
void main() {
 Person p1 = new Person();
 String name1 = new String("A");
 p1.setName(name1);
 String id1 = p1.getID();

 Person p2 = new Person();
 String name2 = new String("B");
 p2.setName(name2);
 String id2 = p2.getID();
}

15
16
17
18
19
20
21
22
23
24
25
26
27

name2

nm

this.name

newName

this.id

id

id2id1

2
(24)

(3)

(4)

(8)

(9)

(12)

(26)(21)

(19)

Fig. 3. Example of direct flow. (The line number for each variable/field reference on the right-hand side is

shown in parentheses.)

3.1 Pattern 1: Direct Flow

The setter and getter example shown in Figure 3 demonstrates how direct flow is an indication of
precision loss for a context-insensitive analysis. The Person class provides methods setName and
getID to modify a person’s name and retrieve his or her ID. Whenever a person’s name is modified,
the ID is updated accordingly (line 5).

After executing this code, id1 in line 21 (resp. id2 in line 26) points to object 1 in line 19 (resp. 2

in line 24) only. However, if the three methods of Person are analyzed using a context-insensitive
pointer analysis, then id1 and id2 will both imprecisely point to objects 1 and 2 . Let us examine
how this imprecision is connected to the direct flow pattern.

The right-hand side of Figure 3 illustrates how two objects 1 and 2 , respectively pointed to by
name1 and name2, first flow from their creation sites in lines 19 and 24 to the parameter nm of the
In method setName in line 3, and then to id in line 12 through a series of store and load operations
(line 4→ line 8→ line 9→ line 12), and finally out of the Out method getID to id1 and id2 in
lines 21 and 26. Hence, by Definition 3.3, the red arrows in Figure 3 form a direct flow.

Notice that with a context-insensitive analysis, objects 1 and 2 are merged in the same points-to
set and further propagated according to this direct flow. In the analysis, the merged objects will
flow out of the Out method, causing id1 and id2 to point to spurious objects. Such imprecision
will only get worse when some operations are further applied on id1 and id2 (not shown in this
example), possibly polluting other parts of the program.

One way to avoid the imprecision is to apply context sensitivity to the methods that participate
in the direct flow. We consider these to be precision-critical methods, since analyzing just one of
them context-insensitively will likely introduce imprecision. With a context-sensitive analysis (for
most variants of context sensitivity), in Figure 3, all variables and field references along the direct
flow will be analyzed separately. For example, object sensitivity will use the two allocation sites at
lines 18 and 23 as contexts. Accordingly, the merged paths along this direct flow are separated by
the two contexts, like unzipping a zipper—hence the name of our technique. A similar strategy of
separating merged paths also applies to wrapped and unwrapped flows, as shown next.

3.2 Pattern 2: Wrapped Flow

The collection and iterator example shown in Figure 4 demonstrates how the wrapped flow pattern
yields precision loss for a context-insensitive analysis. To keep the example simple, the collection

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:8 Yue Li, Tian Tan, Anders Møller, and Yannis Smaragdakis

s1 s2

o2o1

itr

this.elem

el

Wrapped Flow

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

 Object next() {
 return this.next;
 }
}
//Usage Code
void main() {
 Collection c1 = new Collection();
 String s1 = new String("A");
 c1.add(s1);
 Iterator i1 = c1.iterator();
 Object o1 = i1.next();

 Collection c2 = new Collection();
 String s2 = new String("B");
 c2.add(s2);
 Iterator i2 = c2.iterator();
 Object o2 = i2.next();
}

class Collection {
 Object elem;
 void add(Object el) {
 this.elem = el;
 }
 Iterator iterator(){
 Object e = this.elem;
 Iterator itr =
 new Iterator(e);
 return itr;
 }
}
class Iterator {
 Object next;
 Iterator(Object obj) {
 this.next = obj;
 }

e

obj

this.next 1 2

i1 i2
1 21 2

1 2 1 2

21

(25) (31)

(3)

(4)

(7)

(14)

(15)

(33)

(34)

(8)

(27)

(28)

Fig. 4. Example of wrapped flow.

only stores one element, however the code pattern is directly analogous to realistic code, for
arbitrarily-sized collections. Class Collection provides an add method to add an element to the
collection and an iterator method to return an iterator that has a pointer, next, pointing to the
collection element (as set in line 15). The element is passed as an argument to the newly created
iterator (line 8), which establishes a connection between the collection and its iterator. Two objects
1 (line 25) and 2 (line 31) are stored in two different collections, c1 (line 26) and c2 (line 32). The
two objects are then accessed by the iterators of the collections (lines 28 and 34).

After executing the code, o1 in line 28 (resp. o2 in line 34) points to object 1 (resp. 2) only. How-
ever, if any of the four methods of Collection and Iterator are analyzed context-insensitively, o1
and o2 will both imprecisely point to both objects 1 and 2 . Let us examine how this imprecision
is connected to the wrapped flow pattern.
As shown on the right-hand side of Figure 4, similarly to the direct flow example in Figure 3,

objects 1 and 2 flow into the In method add of class Collection, and then further to lines 7,
8, and 14. Unlike a direct flow, the objects 1 and 2 do not directly flow out of the Out method
iterator of class Collection; instead, a wrapper Iterator object, , (created on line 8) in which
object 1 or 2 is stored, flows out of this Out method.
Object wrapping (Definition 3.2) occurs in line 15: objects 1 and 2 (pointed to by obj) are

stored into the next field of the object pointed to by this, and this points to the receiver object
of the constructor call in line 8, which is also pointed to by itr in line 8. As a wrapper object (that
stores object 1 or 2) flows out of an Out method of the same class, by Definition 3.4, the solid
blue arrows in Figure 4 form a wrapped flow.
With a context-insensitive analysis, objects 1 and 2 are merged in the same points-to set and

further propagated according to this wrapped flow. However, unlike a direct flow, imprecision is
not introduced until the access operation (e.g., the next calls in lines 28 and 34) is applied on the
flowing-out wrapper object, causing variables o1 and o2 to point to spurious objects. The wrapper
objects carry the flowing-in objects, which originate from outside the class, so context sensitivity
can separate the merged objects all along their flow through the Collection class.

The example also helps illustrate some subtleties of the flow definitions. Note that the precision
loss patterns are expressed relative to a class: for each of the three patterns, the In method and

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

A Principled Approach to Selective Context Sensitivity for Pointer Analysis 1:9

(34)o2o1

b1

s1 s2

b

this.box

box

Unwrapped Flow

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

this.item

class SyncBox {
 Object box;
 SyncBox(Box box) {
 this.box = box;
 }
 Object getItem() {
 synchronized(this) {
 Box b = this.box;
 Object o = b.getItem();
 return o;
 }
 }
}
class Box {
 Object item;
 Box(Object item) {
 this.item = item;
 }

//Usage Code
void main() {
 String s1 = new String("A");
 Box b1 = new Box(s1);
 SyncBox sb1 = new SyncBox(b1);
 Object o1 = sb1.getItem();

 String s2 = new String("B");
 Box b2 = new Box(s2);
 SyncBox sb2 = new SyncBox(b2);
 Object o2 = sb2.getItem();
}

 Object getItem() {
 Object it = this.item;
 return it;
 }
}

b2

it

o

(31)(26)

(32)(27)

(3)

(4)

(8)

(20)

(20)

(9)

(29)

21

1 2

21

21 21

Fig. 5. Example of unwrapped flow.

the Out method must be in the same class, although the value flow may involve other classes, as
described in Definitions 3.3—3.5. Intuitively, if the precision-loss flows introduced in each class
(through method calls on the objects of the class) could be identified and then avoided by use
of context sensitivity, the imprecision of the whole program could be accordingly controlled via
such a divide-and-conquer scheme. In addition, this design choice enables an efficient and elegant
algorithm for identifying occurrences of the patterns in a given program, by considering each class
one by one, as explained in Section 4.
Therefore, the dashed arrows (bottom right of Figure 4) formed by calling the next method in

lines 28 and 34, do not belong to the wrapped flow, because the calls happen after the wrapper
objects flow out from the Out method of class Collection. Thus, as explained in Section 3.1,
only methods add and iterator (in Collection) and the constructor Iterator (in Iterator) are
included in the wrapped flow and thus considered precision-critical. However, if we consider In and
Out methods from the point of view of class Iterator, then method next is also precision-critical,
since it is involved in a direct flow together with the Iterator constructor, much like the setter
and getter methods in Section 3.1.

3.3 Pattern 3: Unwrapped Flow

We use a synchronized box example (based on classes SynchronizedSet and Set in the JDK but
heavily simplified) to illustrate an unwrapped flow, as shown in Figure 5. Class SyncBox encapsulates
class Box by providing synchronization in the encapsulating method getItem (lines 6–12). Two
objects 1 and 2 are stored into two Box objects (represented by and pointed to by b1 and b2 in
lines 27 and 32), which are further stored into two SyncBox objects (lines 28 and 33).
After executing the code, o1 in line 29 (resp. o2 in line 34) points to object 1 (resp. 2) only.

However, if any of the four methods of classes SyncBox and Box are analyzed context-insensitively,
o1 and o2will both imprecisely point to both objects 1 and 2 . Let us examine how this imprecision
is connected to the unwrapped flow pattern.

As shown on the right-hand side of Figure 5, similar to the direct flow in Figure 3, two Box objects
1 and 2 (pointed to by b1 and b2, respectively) flow into the body of class SyncBox through its
constructor, which acts as an In method, and then further to b in line 8. Unlike in a direct flow,

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:10 Yue Li, Tian Tan, Anders Møller, and Yannis Smaragdakis

the flowing-in objects 1 and 2 do not flow out of the Out method getItem of class SyncBox;
instead, the two unwrapped objects 1 and 2 (respectively stored in 1 and 2) are the ones that
flow out of this Out method.
Object unwrapping (Definition 3.2) occurs in line 20, as a result of the call in line 9: the Box

objects (1 and 2 pointed to by b) are the receiver objects of this virtual call, and this in line 20
will also point to them during pointer analysis. The load operation in line 20 lets the unwrapped
objects (1 and 2) flow to it (line 20), and finally to o1 and o2 (lines 29 and 34) through consecutive
method return values (line 21→ line 9 and then line 10→ lines 29 and 34). As the unwrapped
objects (retrieved from the flowing-in objects) flow out of an Out method of the same class, by
Definition 3.5, the green arrows (in Figure 5) form an unwrapped flow.

We can observe that objects 1 and 2 (and hence the unwrapped objects 1 and 2 they contain)
are merged in the same points-to set and further propagated according to this unwrapped flow.
Although the flowing-in objects do not flow out of an Out method of the same class to introduce
imprecision, the unwrapped objects do, causing the receiving variables, in this case o1 and o2 (lines
29 and 34), to point to spurious objects.

Note that the program points where the unwrapped objects are stored in the flowing-in objects
(lines 26–27 and 31–32) do not belong in the unwrapped flow, as the objects have not yet entered
the In method of class SyncBox. Thus, only constructor SyncBox, method getItem (in SyncBox),
and method getItem (in Box) belong in the unwrapped flow and are considered precision-critical.
However, as in the explanation of the wrapped flow example in Section 3.2, if we consider In
and Out methods from the point of view of class Box, its constructor, Box, will still be analyzed
context-sensitively as it is part of a direct flow (together with the getItem method in Box).

3.4 Combination of Flows

Some imprecision cannot be described by one pattern alone but only by combinations. Consider
the example of an objectW that flows into an In method, where an object O is unwrapped from
W . Then O is wrapped into another wrapper object,W ′, which flows out from an Out method
of the same class. Imprecision may arise in this case, and although none of the three basic flow
patterns in isolation match this flow, it is captured by a combination of unwrapped and wrapped
flows. Zipper identifies not only occurrences of the three patterns but also such combinations. Our
experiments (Section 6) show that the patterns and their combinations account for essentially all
the imprecision that may appear in context-insensitive analysis.

4 ZIPPER

This section introduces Zipper: our approach for identifying precision-critical methods based on
the precision loss patterns of Section 3. Even if the patterns successfully characterize the main
causes of precision loss in context-insensitive analysis, two challenges remain. First, the precision
loss patterns are defined in dynamic execution terms, while Zipper has to capture the potential for
these patterns using static information. Second, useful static information has to be computable from
a mere context-insensitive analysis, in order to guide a context-sensitive one. That is, the potential
for precision loss has to be detected from an analysis that already exhibits this loss. The Zipper
approach is defined with these goals in mind, and manages to make context-sensitive pointer
analysis run faster while preserving most of its precision.
We present the overview of Zipper in Section 4.1 and the concepts of object flow graphs and

precision flow graphs in Sections 4.2 and 4.3, respectively.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

A Principled Approach to Selective Context Sensitivity for Pointer Analysis 1:11

Object Flow Graph
 (OFG)

Construction

Precision Flow Graph
(PFG)

Construction

Graph
Reachability

on PFG

OFG PFG

ZIPPER

Context-Insensitive
Pointer Analysis

Context-Sensitive
Pointer Analysis

which methods
need contexts

Fig. 6. Overview of Zipper.

4.1 Overview of Zipper

The goal of Zipper is to efficiently recognize the precision-critical methods in a given program. The
central part of Zipper is the notion of precision flow graphs (PFGs) that allow us to express all three
precision loss patterns in a uniform way, in the sense that each kind of flow can be represented
by a path in a PFG. Intuitively, a PFG is much like the right-hand side graphs of Figures 3–5, but
replacing the field expressions by the abstract objects and their fields. Via the PFGs, we can convert
the problem of identifying precision-critical methods to an abstract graph computation. All methods
that are involved in one of the three kinds of flows can be efficiently extracted by solving a simple
graph reachability problem on the PFGs.

Constructing the PFGs requires information about how objects flow in the program. We leverage
the concept of object flow graphs (OFGs) [Tonella and Potrich 2005] as explained in Section 4.2.
The OFG for a program allows tracing the flow of objects through local assignments, calls and
returns, and field load and store operations in the program. Therefore, it can naturally express the
direct flow pattern, in a static analysis that approximates the dynamic flows of objects. However,
the original OFG formulation does not represent wrapped and unwrapped flows, thus we cannot
directly use it to identify precision-critical methods. For this reason, we build the PFGs on top of
the OFG to uniformly express all three precision loss patterns.
Figure 6 shows the overall structure of Zipper, which itself contains three components: the

object flow graph construction, the precision flow graph construction, and the graph reachability
computation. First, a fast but imprecise context-insensitive pointer analysis is performed as a
pre-analysis for Zipper.1 To simplify the discussion, we assume that the pre-analysis abstracts
objects by their allocation-sites [Chase et al. 1990], but our technique also works for other object
abstractions [Kanvar and Khedker 2016]. This pre-analysis provides the information for the OFG
construction, in the form of a map pt(v) that captures the points-to set for each variable v. Based
on the OFG, a PFG is constructed for each class. Afterwards, Zipper computes graph reachability on
each PFG to determine which methods are precision-critical. Finally, a selective context-sensitive
pointer analysis is performed, guided by Zipper’s results, so that the pointer analysis applies context
sensitivity to only the precision-critical methods reported by Zipper.

4.2 Object Flow Graphs

The object flow graph (OFG) of a program, as in its original form by Tonella and Potrich [2005], is a
directed graph that expresses how objects flow in the program. The nodes in the OFG represent
program pointers, which can point to objects, and the edges represent basic object flow among
the pointers. More precisely, the OFG contains a node for each variable in the program and for
each field of each abstract object. Objects are abstracted in the same way as in the pre-analysis,
as described in Section 4.1: we here assume allocation-site abstraction is being used, which is the
most common choice, but the technique also works for other choices. An edge a→b in the OFG
means that the objects pointed by pointer a may flow to (and also be pointed to by) pointer b.
1As part of a two-phase analysis, the pre-analysis of Zipper needs to be fast; so currently we use a context-insensitive
pointer analysis as pre-analysis. It would be interesting future work to further explore the effect of more precise pre-analysis.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:12 Yue Li, Tian Tan, Anders Møller, and Yannis Smaragdakis

Local assignment

Assignments in
method calls/returns

Field load

Field store

b = a;

b = c.m(a);
m(p){ return r;}…

b = a.f;

a.f = b;

p

a b

r

a

b

b

b

v Variable node Object field nodeo f. Program Object Flow Graph

a = b;

c.f = a;

d = c;

c.f = d;

e = d.f;

a
1

2

3
4

5

b

d

e

c

1

2

3

4

5

c mthis

where o pt (a)∈

o f.

o f.

o f.

where o pt (a)∈

assuming o pt (c) and o pt (d)∈ ∈

Fig. 7. Object flow graph construction, with an example.

Another way to view the OFG is that it is the subset constraint graph in an Andersen-style points-to
analysis [Andersen 1994; Sridharan et al. 2013].

Tonella and Potrich [2005] propose to build the OFGwith more precision by cloning the variables
of a method for each of its receiver objects (conceptually like object sensitivity [Milanova et al.
2002, 2005]), so that the flow involved in different receiver objects of the same method can be
distinguished. However, this is unnecessary for Zipper, since it builds the OFG based on the results
of a context-insensitive analysis, and all flow queries are done at the class level instead of the object
level, as explained in Section 3. Therefore, we perform no such cloning.

Due to the close connection between OFGs and Andersen-style analysis, constructing the OFG
is trivial, based on the points-to relation pt(v) provided by the context-insensitive pre-analysis.
Figure 7 illustrates this construction. The left-hand side of Figure 7 lists (from left to right) the four
basic object flows, the related Java statements that induce the flows, and the corresponding graph
edges in the OFG.

Consider the code fragment and its corresponding OFG on the right-hand side of Figure 7. There
are five statements labeled 1 – 5 , and each statement causes an edge (with the same label) to be
added to the OFG. With the OFG, the object flow information can be directly obtained simply by
checking graph reachability without the need to explicitly track alias information among variables
or field accesses. For example, variable e is reachable from b in the OFG, which means that the
objects pointed to by b may flow to (and also be pointed to by) e.

As a result, direct flows can be expressed naturally by the paths in the OFG, however, that is not
the case for wrapped and unwrapped flows. In the next section, we describe how to augment the
OFG to express all three kinds of flows.

4.3 Precision Flow Graphs and Graph Reachability

We first explain how to construct precision flow graphs (PFGs) and then how to identify precision-
critical methods by performing graph reachability on each PFG.

Precision Flow Graph Construction. As explained in Section 4.2, one OFG is built for the entire
program. Since the PFGs serve to express the three kinds of precision-loss patterns, which are
all defined relative to a class, as explained in Section 3, we construct one PFG for each class in
the program. As the OFG can already describe direct flow (Section 4.2), the task of building the
PFG is to add edges that can express the other two kinds of flows: wrapped and unwrapped flows.
Algorithm 1 (PfgBuilder) shows how to build PFGc for a given class c . For simplicity, we represent

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

A Principled Approach to Selective Context Sensitivity for Pointer Analysis 1:13

Algorithm 1: PfgBuilder

Input :
OFG (Object Flow Graph)
c (Input class)
S (Set of statements in the program)

Output : PFGc (Precision Flow Graph for class c)
1 PFGc ← { }, VisitedNodes← { },WUEdges← { }
2 foreach m ∈ Inc do
3 foreach parameter p of m do
4 Dfs(Np) where Np is the OFG node for p

5 return PFGc
6 Function Dfs(N)
7 if N ∈ VisitedNodes then
8 return

9 add N to VisitedNodes
10 if N is a variable node Na then
11 foreach b = a.f ∈ S do // Handling unwrapped flow
12 add N a → N b toWUEdges

13 foreach b.f = a ∈ S do // Handling wrapped flow
14 foreach o ∈ pt(b) do
15 add N a → N [o] toWUEdges

16 foreach N→ N ′ ∈ OFG ∪WUEdges do
17 add N → N ′ to PFGc
18 Dfs(N ′)

the PFG and the OFG by their sets of graph edges, and the graph nodes are implicitly those that
appear in the edge sets.
Three sets are initialized to empty sets in line 1: the PFG edges, the set of visited nodes, and

WUEdges, which denotes a set of extra edges for wrapped and unwrapped flows. As all three kinds
of flows begin from the parameters of an Inmethod (see Section 3), the algorithm starts by iterating
through those methods (lines 2–3, where Inc denotes the set of In methods of the input class c).
Function Dfs (line 6) traverses the input OFG and adds the edges for wrapped and unwrapped

flows. As a result, the returned PFGc (line 5) includes all the nodes that can be reached from each
parameter of In methods of c , through direct, wrapped, and unwrapped flows, or combinations
of these. Specifically, unwrapped and wrapped flows are handled in lines 11–12 and lines 13–15,
respectively, by adding the corresponding edges toWUEdges. Finally, the generated PFG includes
direct flows (from the OFG) and wrapped/unwrapped flows (from WUEdges) via the statements in
lines 16–17. Now let us see the details of handling wrapped and unwrapped flows.

Recall that each OFG node represents either a variable or a field of an abstract object. If node N
in line 10 is a variable node Na, then for every load operation (b = a.f in line 11) that may load
the (unwrapped) objects (which are stored in a field of an object pointed to by a) to variable b,
we add an edge from node Na to node Nb. This allows us to model unwrapped flow, as defined in
Definition 3.5 and illustrated in Section 3.3.

The most intricate part of the algorithm is lines 13–15, which handle wrapped flows. If node N
in line 10 is a variable node Na, then for every store operation (b.f = a in line 13) that can store
the objects (pointed to by a) in wrapper objects o pointed to by b (line 14), we add an edge from

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:14 Yue Li, Tian Tan, Anders Møller, and Yannis Smaragdakis

item
C1.elem

C2.elem
e obj Itr.next itr

OFG
PFG

added for
wrapped flow

Fig. 8. A partial PFG for class Collection in Figure 4 (wrapped flow). C1, C2, and Itr denote the objects of

classes Collection and Iterator allocated in lines 24, 30, and 8 in Figure 4, respectively.

node Na to N[o]. Here we use the notation [o] to denote the variable that the abstract object o was
originally assigned to when created: for example, if o is created at a statement v = new . . . then
[o] is the variable v. These added edges enable tracking wrapped flow as defined in Definition 3.4
and illustrated in Section 3.2. As an example, for the object wrapping this.next = obj of line 15
in Figure 4, pt (this) contains an abstract object created at itr = new Iterator(e) in line 8, so
we add an edge from obj to itr.

Note that if (in line 15) instead of adding an edge from Na to N[o] we had added an edge from
Na to Nb (mirroring the handling of unwrapped flows), we would miss some flows. Conceptually,
according to Definition 3.4, modeling wrapped flow requires tracking the wrapper objects (from
where they are created) rather than the variable b in the store operation b.f = a (line 13). For
example, in the case of Figure 4, consider the store operation this.next = obj (line 15) where
this (line 15) and itr (line 8) both point to the Iterator object created in line 8. If we added an
edge from node Nobj to node Nthis (rather than Nobj to Nitr), the flow tracking from Nthis would
not lead to the return statement (line 9) in the Out method, because the wrapped flow flows out
through node Nitr in this case. However, it is safe to add an edge to node Nitr instead (as we do in
line 15 in Algorithm 1) since the wrapper object is originally assigned to itr, so that the flow of
the wrapper object is taken into account as required by Definition 3.4.

Through Algorithm 1, we can see that wrapped and unwrapped flows can be naturally expressed
in the PFG by handling the store/load operations (lines 10–15) recursively during the graph traversal.
In addition, the newly added edges for wrapped and unwrapped flows build new connections with
existing OFG edges that model direct flows. As a result, the generated PFG also naturally expresses
combinations of all three kinds of flows.
Figure 8 shows a partial PFG example for class Collection from Figure 4. The existing OFG is

constructed following the rules in Figure 7. In Figure 8, in the three object field nodes (C1.elem,
C2.elem, and Itr.next), the abstract objects respectively denoted by C1, C2, and Itr represent the
objects of classes Collection and Iterator. Node obj corresponds to Na in line 15 in Algorithm 1;
the edge from node obj to node Itr.next corresponds to the store operation this.next = obj
in line 15 in Figure 4, and also the store operation b.f = a in line 13 in Algorithm 1. According to
line 15 in Algorithm 1, an edge that enables tracking the wrapped flow is added in Figure 8 from
node obj to node itr, since [Itr] is the variable itr.

Graph Reachability on Precision Flow Graphs. We now explain how Zipper extracts the precision-
critical methods based on the PFGs. Generally, Zipper first computes all the nodes that are involved
in the three kinds of flows by solving a simple graph reachability problem on the PFG, and then
collects the methods that contain the nodes as the precision-critical methods.

Given a class c , each flow in the precision-loss patterns corresponds to a path from a parameter
node of an In method of c to a return variable node of an Out method of c in PFGc . Therefore,
obtaining the statements that are involved in the flows is equivalent to computing which nodes
are reachable from a parameter of an In method and can also reach a return variable of an Out

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

A Principled Approach to Selective Context Sensitivity for Pointer Analysis 1:15

Algorithm 2: PcmCollector

Input : c (Input class)
PFGc (Precision Flow Graph for class c)

Output : PCMc (Precision-Critical Methods for class c)
1 FlowNodes← { }, PCMc ← { }
2 foreach m ∈ Outc do
3 foreach return variable r ofm do
4 FlowNodes

⋃
= NodesCanReach(N r , PFGc) // Backward graph reachability

5 foreach N ∈ FlowNodes do
6 if N is a variable node Na and a is declared inm then
7 add m to PCMc

8 if N is an object field node No .f and o is allocated inm then
9 add m to PCMc

10 return PCMc

Algorithm 3: Zipper

Input : p (Input program)
OFG (Object Flow Graph for program p)

Output : PCM (Precision-Critical Methods for program p)
1 PCM← { }, S ← set of all statements in p
2 foreach class c in p do
3 PFGc ← PfgBuilder(OFG, c, S)
4 PCMc ← PcmCollector(c, PFGc)
5 PCM

⋃
= PCMc

6 return PCM

method in PFGc . Since Zipper builds PFGc starting from the parameters of the In methods (lines
2–3 in Algorithm 1), all nodes in PFGc are reachable from the In methods. Therefore, we only need
to find out which nodes in PFGc can reach the return variables of Out methods of class c .
Algorithm 2 (PcmCollector) defines the collection of precision-critical methods for an input

class c based on PFGc . In line 1, two sets are initialized to empty: FlowNodes denotes the set of nodes
that are involved in the flows from In methods to Out methods of class c , and PCMc denotes the
set of precision-critical methods for class c , i.e., the methods that contain the nodes in FlowNodes.

In lines 2–4, PcmCollector fills FlowNodes by iterating through the return variables of all Out
methods of c (denoted by Outc) and collecting all nodes that can reach the return variables in PFGc .
The function NodesCanReach used in line 4 is a standard backward graph reachability algorithm
which traverses the PFGc starting from Nr and returns all nodes that can reach Nr on PFGc .

In lines 5–9, PcmCollector fills PCMc . There are two kinds of nodes in PFGc that are handled
differently. For a variable node Na , PcmCollector adds the method where the variable a is declared
to PCMc (lines 6–7). For an object field node No .f , PcmCollector adds the method where the
abstract object o is allocated to PCMc (lines 8–9). As a result, the algorithm collects the precision-
critical methods for each class in a given program.

Algorithm 3 shows how Zipper uses Algorithms 1 and 2 to identify the precision-critical methods
PCM for a given program p. With this information, Zipper can guide context-sensitive pointer
analyses to apply context sensitivity only for the precision-critical methods.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:16 Yue Li, Tian Tan, Anders Møller, and Yannis Smaragdakis

The precise statements of Algorithms 1 and 2 capture the design choices of Zipper. Inferences
on flow patterns are made on a per-class basis, and context sensitivity is applied on a per-method
basis. It is easy to imagine applying context sensitivity at a finer granularity. That is, we could
apply context sensitivity to only the variables and object fields that are involved in the flows
in the precision-loss patterns (i.e., the nodes stored in FlowNodes in Algorithm 2) instead of the
entire containing methods. In this way, although within the same precision-critical methods, other
variables and object fields that are irrelevant to precision-loss patterns can be analyzed context-
insensitively, which may lead to better efficiency. For simplicity, in this article we only consider
context sensitivity at the granularity of methods, and leave the potential of more refined options
for future work.

5 ZIPPER EXPRESS

In Section 3, we have explained where precision is lost in a context-insensitive pointer analysis in
terms of the three patterns of precision-loss flows. Based on this principle, Zipper (Section 4) has
been designed to apply context sensitivity only to the identified precision-critical methods, while
analyzing the remaining methods context-insensitively. Zipper fulfills its goal (as demonstrated
in Section 6.1): it is able to preserve virtually all of the precision of highly-precise conventional
context-sensitive pointer analyses while making them run faster. One can use Zipper as a full
replacement for a conventional context-sensitive pointer analysis such as 2obj.
However, Zipper’s precision-preserving principle is very strict in the sense that it will not

sacrifice any precision for improving efficiency. On one hand, this design choice is suitable for
validating whether our precision-loss model (Section 3) can help identify thoroughly the precision-
critical methods that capture the vast majority of precision of full context sensitivity; on the other
hand, it may make Zipper unscalable for some complex programs.
To address this problem, in this section, we present a new pointer analysis, Zipper express

(Zippere). Zippere makes a new precision and efficiency trade-off, running significantly faster
while being only slightly less precise than Zipper. Consequently, Zippere is a new sweet spot in
state-of-the-art pointer analysis for Java, with great efficiency and good precision.

5.1 Insights of Zipper
e

Among the precision-critical methods identified by Zipper, some may significantly degrade analysis
efficiency if treated context sensitively. Therefore, to make the analysis run fast, we need to find
those efficiency-critical methods. The idea behind Zippere is to apply context sensitivity only to the
precision-critical methods that are not efficiency-critical, i.e., those that do not significantly hurt
analysis efficiency.

How to Identify Efficiency-Critical Methods? In Zippere , we consider the size of the points-to set
for each methodm, denoted as #ptsm , as an important factor for determining whether a method
may incur serious efficiency problems when being analyzed context sensitively. Here the size of the
points-to set for a methodm means the sum of the sizes of the points-to sets for all the variables
inm. As the analysis is built on top of the three-address code of a program, an extra variable is
introduced when a parameter or field in the program is referenced in this code format. Therefore,
the variables in a method include all original local variables, as well as those extra variables.

Leveraging #ptsm to estimate the efficiency cost for pointer analysis has been adopted in existing
literature [Smaragdakis et al. 2014], and there are two reasons to consider this metric. First, the
efficiency of a context-sensitive pointer analysis is directly correlated with the number of its
generated points-to facts: the larger the number, the more memory and analysis iterations are
needed, and, accordingly, more analysis time is spent. Second, #ptsm can easily be approximated

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

A Principled Approach to Selective Context Sensitivity for Pointer Analysis 1:17

from a context-insensitive pre-analysis as described in Section 4. If #ptsm for a methodm is large,
it indicates that analyzing m context-sensitively would likely produce many context-sensitive
points-to facts [Li et al. 2018b] resulting in a high analysis time.
However, we find that simply using #ptsm to decide whether a given methodm is efficiency-

critical does not work well: the analysis becomes both inefficient and imprecise for some programs
as the wrong methods are selected for context sensitivity. At the same time, we also do not
want to complicate Zippere by incorporating multiple configurable parameters as in existing
work [Hassanshahi et al. 2017; Smaragdakis et al. 2014; Wei and Ryder 2015].

The precision-loss model introduced in Section 3 enables us to address this problem. Recall that
the precision-critical methods are identified based on the granularity of each class (from its In
methods to its Out methods). This means that, for each class, if one method that is involved in the
precision-loss flows (or their combinations) is not analyzed with context sensitivity, we may still
lose the precision even if all the remaining involved methods are analyzed context-sensitively.
Based on this key observation, in Zippere we identify efficiency-critical methods using #ptsm

but at the granularity of classes rather than methods. This means that we use the sum of #ptsm
of all the methodsm that are involved in the precision-loss flows (or their combinations) when
analyzing class c , and we denote this parameter as #ptsc (note thatm may belong to a class other
than c , as explained in Section 3). For each class c , all its involved methods can be treated as one:
either all or none of its methods are analyzed with context sensitivity.

How to Identify Efficiency-Critical Methods Using #ptsc? When #ptsc for a class c is large, i.e.,
exceeds a certain threshold, Zippere excludes all its related methods that are involved in the
precision-loss flows from context sensitivity, thereby preventing them from hurting the analysis
speed. Note that, as explained above, #ptsc is not the points-to size for c; instead, it represents
the cumulative points-to size of all precision-critical methods involved in the precision-loss flows
starting from and ending in class c .
The last problem is how to select a shared threshold for different programs. A fixed value will

not work well as a constant threshold may be too large for small or simple programs, or too small
for large or complex programs. To resolve this problem, instead of a fixed value, we consider the
threshold as a percentage value, PV. That is, for each class c in program p, if (#ptsc / #ptsp) > PV

(where #ptsp is the sum of the sizes of the points-to sets for all variables in p), we say that #ptsc is
too large relative to the points-to size of the whole program, and thus consider the related methods
in c to be efficiency-critical methods. With this heuristic, we only need one threshold, i.e., PV, for
all programs. By default PV is set to 5%.

5.2 The Zipper
e
Algorithm

Given the background and insights presented in Section 5.1, in this section we explain how Zippere
works. Algorithm 4 describes how Zippere selects a set of methods, i.e., Mcs (the output of the
algorithm), that will be analyzed context-sensitively in the main analysis. Briefly, they are the
remaining methods after excluding the efficiency-critical methods from the precision-critical
methods identified by the approach as used in Zipper. Thus Algorithm 4 extends Algorithm 3.
As inputs of the algorithm, OFG is the object flow graph, which is built by the pre-analysis as

described in Section 4.2, and PV is the shared threshold for all programs as described in Section 5.1.
In line 1, TH is per program and denotes the threshold for the given program p, representing

the efficiency-critical bound for the sizes of the points-to set of each class c in p. As illustrated
in Section 5.1, when #ptsc is larger than TH, Zippere will consider all precision-critical methods
related to class c to be efficiency-critical. As shown in line 6, #ptsc is the size of the points-to sets

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:18 Yue Li, Tian Tan, Anders Møller, and Yannis Smaragdakis

Algorithm 4: Zippere

Input :
p (Input program)
OFG (Object Flow Graph for program p)
PV (The shared threshold for all programs)

Output : Mcs (The methods to be analyzed context-sensitively)
1 TH = PV ×

∑
v ∈p | pt (v) | // The threshold for program p

2 Mcs ← { }, S ← set of all statements in p
3 foreach class c in p do
4 PFGc ← PfgBuilder(OFG, c, S)
5 PCMc ← PcmCollector(c, PFGc)
6 #ptsc =

∑
m∈PCMc

∑
v ∈m | pt (v) |

7 if #ptsc ≤ TH then
8 Mcs

⋃
= PCMc

9 return Mcs

for all the variables in all precision-critical methods for each given class c . Per lines 7–8, only the
precision-critical methods that are not efficiency-critical will be analyzed with context sensitivity.
As explained in Section 4, it is possible that a methodm is involved in precision-loss flows for

multiple classes, say c1 and c2, when collecting their corresponding precision-critical methods. In
Zippere , ifm is identified as efficiency-critical in c1 but non-efficiency-critical in c2,m will still be
analyzed context-sensitively for precision, as reflected in the set union operation of line 8.

6 EVALUATION

In this section, we investigate the following research questions for evaluating our selective context-
sensitivity techniques.
RQ1. Is Zipper-guided pointer analysis precise and efficient?

(a) How much of the precision of a conventional analysis can Zipper preserve?
(b) How fast is Zipper-guided pointer analysis compared to a conventional analysis?
(c) What is the overhead of running Zipper?
We consider object-sensitive pointer analysis [Milanova et al. 2002, 2005] as the conventional
analysis that applies context sensitivity to all methods. That analysis is well-recognized as
the most precise context-sensitivity variant and widely supported by all popular pointer
analysis frameworks for Java.

RQ2. How does Zipper-guided pointer analysis compare to state-of-the-art alternative techniques
(specifically, introspective analyses [Smaragdakis et al. 2014]) that also apply context sensi-
tivity for only a subset of the methods, in terms of precision and efficiency?

RQ3. What is the effect of each of Zipper’s precision loss patterns on the analysis results?
(a) Howmany methods does Zipper consider precision-critical, and how does each precision

loss pattern contribute to this number?
(b) How does each of the precision loss patterns affect the precision and efficiency of Zipper-

guided pointer analysis?
RQ4. Is the precision-loss model (introduced in Section 3) general enough to preserve the precision

of other mainstream variants of context sensitivity, i.e., call-site sensitivity [Sharir and Pnueli
1981], type sensitivity [Smaragdakis et al. 2011], and hybrid context sensitivity [Kastrinis
and Smaragdakis 2013]?

RQ5. Is Zippere -guided pointer analysis effective in practice?
(a) How does Zippere -guided pointer analysis perform in terms of precision and efficiency?

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

A Principled Approach to Selective Context Sensitivity for Pointer Analysis 1:19

(b) What is the overhead of running Zippere and how many methods does Zippere consider
precision-critical and not efficiency-critical?

Implementation. We have implemented Zipper and Zippere as open-source stand-alone tools in
Java, available at http://www.brics.dk/zipper. Benefiting from simple insights and algorithms, Zip-
per’s core implementation contains less than 1 500 lines of Java code, and Zippere adds only about
100 lines of Java code on top of Zipper. In addition, both tools are designed to work with various
pointer analysis frameworks, such as Doop [Bravenboer and Smaragdakis 2009],Wala [WALA
2018], Chord [Naik et al. 2006], and Soot [Vallée-Rai et al. 1999]. To investigate its effectiveness,
we have integrated Zipper and Zippere with Doop, a state-of-the-art whole-program pointer
analysis framework for Java. Interacting with existing context-sensitive pointer analysis is simple,
as Zipper’s (or Zippere ’s) output is just a set of precision-critical methods. For example, we only
need to slightly modify three Datalog rules in Doop to enable Doop to apply context sensitivity to
only the precision-critical methods reported by Zipper or Zippere . We expect a similarly simple
integration for other pointer analysis tools.

Experimental Settings. We run all experiments on a machine with an Intel Xeon (E5) 2.6GHz CPU
(with 16 cores2) and 48Gmemory. The time budget is set to 1.5 hours, as in previous work [Jeong et al.
2017; Kastrinis and Smaragdakis 2013; Smaragdakis et al. 2014]. We evaluate Zipper using a large
OpenJDK (1.6.0_24) library and 10 large Java programs: five are popular real-world applications (the
first five entries in Table 1) and five are from the standard DaCapo 2006 benchmarks [Blackburn
et al. 2006] (the last five entries in Table 1). We discuss the reason for this subset of the DaCapo
benchmarks after introducing the metrics and analysis settings.
As explained in Section 5, Zippere differs from Zipper by being designed to make a context-

sensitive pointer analysis run very fast with still good precision. Therefore, to evaluate the ef-
fectiveness of Zippere , in addition to the 10 programs in Table 1, we consider another 10 large
programs (the last 10 entries in Table 8) where both 2obj and Zipper-guided object-sensitive
analysis (Zipper-2obj) cannot finish the analysis within 3 hours. They are jython (interpreter for
Python), hsqldb (database system), pmd5 (source code analyzer), jedit (text editor), soot (analysis
framework for Java), eclipse-r (reflection-enabled eclipse), briss (PDF cropper), h2 (database
system), gruntspud (graphical CVS client) and columba (email client). As mentioned in Section 5,
we set PV to its default value 5% in the experiments.

In RQ1, we consider a 2-object-sensitive pointer (2obj) analysis (with one context element for
heap objects) [Milanova et al. 2002, 2005] as the conventional context-sensitive pointer analysis we
seek to match in terms of precision. 2obj is regarded as the most practical high-precision pointer
analysis for Java [Lhoták and Hendren 2006; Smaragdakis et al. 2011; Tan et al. 2016] and is widely
adopted in recent literature [Hassanshahi et al. 2017; Jeong et al. 2017; Kastrinis and Smaragdakis
2013; Scholz et al. 2016; Smaragdakis et al. 2013, 2014; Tan et al. 2017; Thiessen and Lhoták 2017]
and analysis tools, including popular static analysis frameworks for Android [Arzt et al. 2014;
Gordon et al. 2015]. Relative to other k-object-sensitive analyses, 2obj is significantly more precise
than 1obj [Kastrinis and Smaragdakis 2013; Smaragdakis et al. 2011], and 3obj does not scale for
most DaCapo benchmarks [Tan et al. 2017].

In RQ2, we compare Zipper with the introspective analysis of Smaragdakis et al. [2014], which is
the most closely related state-of-the-art analysis that employs context sensitivity only for a subset
of the methods. These methods are selected by a pre-analysis according to two heuristics (the
pre-analysis is also based on a fast context-insensitive pointer analysis, like Zipper), resulting in

2The implementation of Zipper and Zippere trivially exploits multi-threading, whereas all the pointer analyses run
single-threaded.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

http://www.brics.dk/zipper

1:20 Yue Li, Tian Tan, Anders Møller, and Yannis Smaragdakis

two variants of introspective analyses, IntroA and IntroB. (The naming and heuristics are from
Smaragdakis et al. [2014]. The Doop integration of Zipper is using the version published for the
artifact evaluation process of PLDI’14, which contains the exact setup for these algorithms, for
direct comparison.) Generally, IntroA is faster but less precise than IntroB.

Other DaCapo benchmarks. In the DaCapo benchmarks, 2obj fails to scale for jython and hsqldb
within 1.5 hours. Zipper also cannot help for these two known problematic benchmarks [Kastrinis
and Smaragdakis 2013; Smaragdakis et al. 2011; Tan et al. 2016, 2017], as, unlike Zippere and the
introspective analysis of Smaragdakis et al. [2014], Zipper is designed to keep most of the analysis
precision: its precision-guided principle prevents it from further removing more contexts, since
that could degrade precision. Regarding introspective analysis, IntroB also fails to scale for jython
but scales for hsqldb; IntroA scales for both but only achieves precision slightly better than a
context-insensitive analysis. Consequently, to provide an observable precision baseline (i.e., the
most precise results achieved by 2obj), for Zipper, we only consider the remaining five large
DaCapo benchmarks for which 2obj is scalable. For Zippere , jython and hsqldb are also included,
as mentioned above.

6.1 RQ1: Precision and Efficiency of Zipper-Guided Pointer Analysis

In this section, we first examine the precision and efficiency of Zipper-guided pointer analysis
by comparing it with 2obj as explained above, and then show the overhead of running Zipper
itself. As a conventional context-sensitive pointer analysis, to produce high precision, 2obj applies
context sensitivity to each method of the program indiscriminately. This is still the mainstream
context-sensitivity scheme deployed in most pointer analysis frameworks for Java [Bravenboer and
Smaragdakis 2009; Naik et al. 2006; WALA 2018]) and Android [Arzt et al. 2014; Gordon et al. 2015].
Table 1 shows the results of all analyses. Each program has five rows of data, respectively

representing context-insensitive pointer analysis (ci), conventional object-sensitive pointer analysis
(2obj), Zipper (Zipper-2obj), and two introspective pointer analyses (introA-2obj and introB-2obj).
The last two analyses will be discussed in Section 6.2.

6.1.1 How Much Precision of a Conventional Analysis Is Preserved by Zipper. To measure precision,
we consider four independently useful client analyses, (subsets of which) also used as the precision
metrics in past literature [Jeong et al. 2017; Kastrinis and Smaragdakis 2013; Lhoták and Hendren
2006; Smaragdakis et al. 2014; Sridharan and Bodík 2006; Tan et al. 2017]: a cast-resolution analysis
(metric: the number of cast operations that may fail, denoted #fail-cast), a devirtualization analysis
(metric: the number of virtual call sites that cannot be disambiguated into monomorphic calls,
denoted #poly-call), a method reachability analysis (metric: the number of reachable methods,
denoted #reach-mtd), and a call-graph construction analysis (metric: the number of call graph
edges, denoted #call-edge). These metrics should give a thorough idea of analysis precision for
useful clients. The results are shown in the last four columns in Table 1. In all cases, lower is better.
Comparing Zipper with the conventional pointer analysis 2obj, we see that Zipper is able to

achieve nearly identical precision as 2obj for every metric in every program. In summary, on
average, 98.8% of the precision of 2obj can be preserved considering all client analyses. Specifically,
the average number for each client analysis is 96.8% for #fail-cast, 98.9% for #poly-call, 99.8% for
#reach-mtd and 99.7% for #call-edge.

Zipper can produce such great precision because it is designed according to its precision-guided
principle: all the methods that are involved in the three basic flows (direct, wrapped, and unwrapped
flows), or their combinations, will be analyzed context-sensitively. Since the three flows capture
the essence of value flows in Java programs where imprecision may arise through method calls (as
explained in Section 3), most context-related imprecision can be discovered by Zipper. However, on

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

A Principled Approach to Selective Context Sensitivity for Pointer Analysis 1:21

Table 1. Performance and precision results for context-insensitive (ci), conventional object-sensitive (2obj),

Zipper-guided (Zipper-2obj), and introspective object-sensitive (introX-2obj) pointer analyses.

Program Pointer analysis Time (s) #fail-cast #poly-call #reach-mtd #call-edge

batik

ci 84 2 961 4 681 19 197 101 616
2obj 3 300 1 606 3 491 16 859 76 807

Zipper-2obj 1 037 1 614 3 501 16 863 76 858
introA-2obj 265 2 675 4 262 19 011 97 120
introB-2obj 2 527 2 149 3 997 18 703 90 126

checkstyle

ci 51 1 114 1 444 9 866 57 490
2obj 2 003 581 1 035 9 513 48 809

Zipper-2obj 378 607 1 059 9 526 48 945
introA-2obj 134 970 1 206 9 769 55 736
introB-2obj 1 781 792 1 134 9 595 51 437

sunflow

ci 62 3 003 4 113 19 773 106 410
2obj 1 208 1 837 3 385 19 245 89 866

Zipper-2obj 567 1 869 3 391 19 247 89 902
introA-2obj 160 2 764 3 796 19 651 103 536
introB-2obj 413 2 346 3 529 19 429 95 602

findbugs

ci 53 2 508 2 925 13 036 77 370
2obj 2 661 1 409 2 182 12 657 65 836

Zipper-2obj 908 1 437 2 190 12 662 65 880
introA-2obj 196 2 271 2 422 12 960 73 681
introB-2obj 419 2 024 2 372 12 882 70 725

jpc

ci 57 2 370 5 013 17 146 96 669
2obj 559 1 392 4 222 15 852 81 030

Zipper-2obj 229 1 415 4 231 15 857 81 072
introA-2obj 132 2 169 4 703 17 038 95 170
introB-2obj 329 1 736 4 327 16 001 85 316

eclipse

ci 26 1 139 1 334 8 465 45 474
2obj 146 546 980 7 911 38 151

Zipper-2obj 72 586 1 013 7 927 38 369
introA-2obj 59 977 1 118 8 319 43 781
introB-2obj 75 764 1 046 8 001 39 876

chart

ci 50 1 810 1 852 12 064 63 453
2obj 282 883 1 378 11 330 52 374

Zipper-2obj 82 910 1 384 11 334 52 399
introA-2obj 135 1 580 1 613 11 952 61 323
introB-2obj 198 1 236 1 497 11 518 55 594

fop

ci 78 2 458 3 585 17 154 84 330
2obj 1 200 1 446 2 844 16 438 71 408

Zipper-2obj 520 1 471 2 860 16 442 71 478
introA-2obj 212 2 206 3 246 17 007 82 113
introB-2obj 561 1 804 2 979 16 571 75 770

xalan

ci 43 1 182 1 898 9 705 51 302
2obj 1 093 533 1 522 9 047 44 871

Zipper-2obj 116 568 1 542 9 129 45 332
introA-2obj 117 1 129 1 765 9 637 50 659
introB-2obj 755 723 1 579 9 119 45 904

bloat

ci 32 1 924 2 014 8 939 61 150
2obj 3 525 1 193 1 427 8 470 53 143

Zipper-2obj 2 971 1 224 1 449 8 486 53 289
introA-2obj 61 1 809 1 690 8 869 60 111
introB-2obj 141 1 621 1 522 8 626 55 455
Zipper-2obj* 53 1 310 1 511 8 538 54 049

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:22 Yue Li, Tian Tan, Anders Møller, and Yannis Smaragdakis

1
2
3
4
5
6
7

class BufferedReader{
 Reader in;
 BufferedReader(Reader in){
 this.in = in;
 }
 void close(){in.close();}
}

 8
 9
10
11
12
13
14

//Usage Code
InputStreamReader isReader = new InputStreamReader();
BufferedReader reader1 = new BufferedReader(isReader);
reader1.close();
FileReader fReader = new FileReader();
BufferedReader reader2 = new BufferedReader(fReader);
//reader2.close();

Fig. 9. Example of the no-out flow case.

void m(A input,B output) {
 output.field = input;
}

m(a, b); //rare
b.setField(a); //common

Fig. 10. Example of the parameter-out flow case.

average, Zipper still misses 1.2% of the precision. Although these cases are rare and it is extremely
hard to enumerate all of them, it is informative to examine some of them to understand the
capabilities of Zipper more comprehensively. Next, we give two examples to illustrate some of the
rare cases where Zipper loses precision.

The No-Out Flow Case. This case is observed in real code in our experiments, and we simplify the
code as in Figure 9. The InputStreamReader object (created in line 9) and the FileReader object
(created in line 12) flow into the In method BufferedReader (a constructor) through parameter in
(line 3). The objects are stored (line 4) and further loaded and become the receiver objects of the
virtual call in.close() (line 6). The flow does not flow out through an Out method and thus the
two methods in class BufferedReader are analyzed context-insensitively. As a result, the virtual
call in line 6 will not be disambiguated into a monomorphic call, resulting in precision loss in the
devirtualization analysis client. Note that there would be no observable (in our metrics) precision
loss compared to a conventional object-sensitive analysis if the call in line 14 existed (i.e., if it were
not commented out). The call site on line 6 is truly polymorphic, and can be exercised for multiple
receiver objects, as the addition of line 14 demonstrates.

The Parameter-Out Flow Case. A second instance where Zipper loses precision, this time made
up but interesting theoretically, is shown in Figure 10. An In method m of some class accepts two
parameters input and output, and unlike any of our three precision loss patterns, there is no flow
out of an Out method.

Instead, the flowing-in object through input flows out through another parameter output via a
store operation, output.field = input. Thus, Zipper reports m as non-precision-critical. However,
if m is analyzed context-insensitively, the flowing-in objects may be merged in the wrapper object
(say w, which is pointed to by output) and imprecision would be introduced when the objects are
then loaded from w outside method m. This case is rare, since it is unusual in Java (or, generally,
object-oriented) programs to modify some field of an object by calling methods such as m. In Java,
such modification is usually done with a call as in the last line of the example.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

A Principled Approach to Selective Context Sensitivity for Pointer Analysis 1:23

6.1.2 How Fast Is Zipper-Guided Pointer Analysis Compared with a Conventional Analysis? The
analysis times for Zipper-guided pointer analysis and 2obj are shown in the third column in Table 1.
On average, Zipper-guided pointer analysis achieves 3.4× speedup compared with 2obj. The best
case is program xalan where 2obj spends about 18 minutes while Zipper-guided analysis finishes
running in well under 2 minutes (9.4× speedup). The worst case is program bloat where 2obj
spends 59 minutes while Zipper-guided analysis is 9 minutes faster (1.2× speedup).

Recall that the goal of Zipper is not simply to speed up context-sensitive pointer analysis, but to
do so while retaining its precision. All methods considered precision-critical are analyzed context-
sensitively with the Zipper approach, even though context-insensitive analysis might be faster.
This explains the bloat case: despite not seeing much efficiency improvement, high precision
(98.8%) has been successfully maintained.

Zipper-2obj* for bloat. The strict precision-guided design of Zipper can be relaxed for better
efficiency. Specifically, among the precision-critical methods identified by Zipper, some of them
can be further excluded by keeping only the highly-precision-critical methods, which may cause
a significant precision loss if not analyzed context-sensitively. As a proof-of-concept, to identify
these highly-precision-critical methods, we simply modify Zipper by adding one more heuristic
and apply the modified Zipper (named Zipper-2obj* in Table 1) to analyze bloat as described
below.

The added heuristic is that we do not consider basic flow tracking from an In method unless the
flowing-in objects have a large number of different types (for this proof-of-concept experiment,
we set the number to 50). As a result, the modified Zipper (Zipper-2obj*) reports only 14% of
the methods as highly-precision-critical (in comparison, the original Zipper reports 40% of the
methods as precision-critical), and the achieved efficiency and precision is shown in the last row of
Table 1. The speedup now becomes 66.5×, which is much faster than the original 1.2×; however, as
explained above, precision is accordingly hurt: 95.5% of the precision is preserved, which is less
than the 98.8% achieved by the original Zipper (Zipper-2obj).

This extra experiment demonstrates that heuristic approaches can be developed on top of Zipper
via its construction of precision flow graphs. A promising approach in this direction is Zippere , as
already discussed. Comparing with the Zippere numbers in Section 6.6, it can be seen that Zippere
outperforms the modified Zipper (Zipper-2obj*), in both efficiency and precision, for the very same
benchmark (bloat) that motivated Zipper-2obj* in the first place.
Finally, note that, as Zipper only reports on average 38% of the methods in a program as

precision-critical (see Section 6.3.1), most methods are analyzed context-insensitively, which results
in memory savings compared to a conventional context-sensitive pointer analysis. Thus, Zipper is
expected to be even more beneficial for memory-constrained analysis environments.

6.1.3 What Is the Overhead of Running Zipper? As shown earlier, in Figure 6, the overhead of
Zipper consists of: (1) running a context-insensitive pointer analysis (ci) as Zipper’s pre-analysis
and (2) running Zipper itself which identifies the precision-critical methods. The analysis time of
ci is given in Table 1. On average, ci costs 54 seconds for each program.
Table 2 (last row) shows the performance of Zipper itself: the average analysis time of Zipper

is just 11 seconds per input program. Table 2 also lists some related metrics about program size
(the number of classes) and elements of Zipper’s reasoning, i.e., the number of nodes and edges
of the object flow graph (OFG) per program, and the average number of nodes and edges of the
precision flow graph (PFG) per class. The overhead of running Zipper is very small considering the
considerable speedup it achieves for costly context-sensitive pointer analysis, as shown in Table 1.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:24 Yue Li, Tian Tan, Anders Møller, and Yannis Smaragdakis

Table 2. Size metrics of all the programs and the corresponding overhead of running Zipper.

Program #classes #nodes #edges #avg. nodes #avg. edges Zipper time
in OFG in OFG in PFG in PFG (seconds)

batik 2 701 189 993 486 629 3 576 10 253 27
checkstyle 1 301 92 167 203 445 3 333 8 383 7
sunflow 2 496 188 395 407 526 3 080 8 057 17
findbugs 1 752 127 939 276 319 1 711 4 273 6
jpc 2 039 166 639 386 618 2 329 6 727 15
eclipse 1 122 84 352 172 161 1 823 4 480 3
chart 1 578 115 515 230 409 2 464 6 086 8
fop 2 580 162 086 370 003 2 285 6 403 17
xalan 1 268 94 969 207 300 3 061 7 478 5
bloat 1 107 87 223 201 057 1 942 4 724 4

avg. 1 794 130 928 294 147 2 560 6 686 11

6.2 RQ2: Zipper-Guided Pointer Analysis vs. Introspective Pointer Analyses

We next compare Zipper-guided pointer analysis with the most closely related state-of-the-art
work: the two introspective analyses, IntroA and IntroB [Smaragdakis et al. 2014], in terms of
precision and efficiency.
Detailed comparison results are shown in the last three entries for each program in Table 1.

On average, IntroA preserves 74.0% and IntroB keeps 86.5% of the 2obj precision while Zipper
maintains 98.8% of it. Moreover, Zipper achieves better precision than both IntroA and IntroB for
all four client analyess in all the evaluated programs, with the exception of one instance (out of
80): #reach-mtd for xalan with IntroB (which is almost 7 times slower than Zipper).

As both Zipper and introspective analysis involve a pre-analysis to select the methods that will
be analyzed context-sensitively in the main analysis, the efficiency comparison has two parts: the
costs of their pre-analyses and the guided main analyses.
Regarding the pre-analysis, its cost consists of the time of running context-insensitive pointer

analysis (for providing basic analysis information) and the time of running Zipper and introspective
analysis themselves (for selecting the precision-critical methods). For the former, their costs are
the same as they rely on the same context-insensitive pointer analysis provided by Doop. For the
latter, for each program, on average, IntroA and IntroB spend 19 and 24 seconds, respectively, while
Zipper spends 11 seconds (as shown in Section 6.1.3).

Regarding the main analysis, their results are shown in Table 1 (the third column). In summary,
IntroA runs faster than Zipper in 9 out of 10 programs; this comes as no surprise given that the
precision of IntroA is only slightly better than context-insensitive analysis while Zipper preserves
almost all of the precision of a full context-sensitive analysis, i.e., 2obj in our setting. Zipper runs
faster than IntroB in 7 out of 10 programs (except sunflow, findbugs, and bloat) while achieving
better precision than IntroB in all cases except #reach-mtd for xalan, as described above.

6.3 RQ3: Effect of Each Precision Loss Pattern

Zipper identifies precision-critical methods and guides context-sensitive pointer analysis based
on the three precision loss patterns introduced in Section 3. In this section, we further evaluate
Zipper by measuring the impact of each pattern. We consider four combinations of the three
patterns: (1) direct flow alone (Direct), (2) direct flow and wrapped flow (Direct+Wrapped),
(3) direct flow and unwrapped flow (Direct+Unwrapped) and (4) all three flows, i.e., Zipper
(Direct+Wrapped+Unwrapped).

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

A Principled Approach to Selective Context Sensitivity for Pointer Analysis 1:25

1
9

 1
9

7

9
 8

6
6

1
9

 7
7

3

1
3

 0
3

6

1
7

 1
4

6

8
 4

6
5

1
2

 0
6

4

1
7

 1
5

4

9
 7

0
5

8
 9

3
9

4
 9

9
9

2
 3

2
3

4
 4

8
0

2
 5

7
9

3
 4

0
3

1
 8

2
5

2
 3

2
4 3

 6
4

4

2
 2

9
4

2
 2

3
7

7
 8

6
5

3
 6

0
6

7
 5

5
7

4
 7

2
3 5
 6

2
1

3
 1

2
7

3
 9

7
0

5
 8

4
4

3
 5

1
9

3
 4

9
2

5
 5

8
4

2
 5

3
4

5
 0

4
7

3
 0

2
2 3
 9

0
9

2
 0

3
2

2
 5

8
0

4
 1

9
8

2
 4

7
4

2
 3

9
5

8
 2

6
1

3
 7

9
8

7
 8

8
3

4
 8

4
7 5
 9

0
6

3
 2

4
8 4
 1

5
5

6
 1

9
8

3
 6

6
4

3
 5

7
3

batik checkstyle sunflow findbugs jpc ecl ipse chart fop xalan bloat

#Reachable Methods

Direct

Direct+Wrapped

Direct+Unwrapped

Direct+Wrapped+Unwrapped

Fig. 11. Precision-critical methods under different combinations of the basic precision loss patterns.

Note that, as direct flow is the basic flow on which wrapped and unwrapped flows depend
(Zipper requires direct flow to track the flows of the wrapper and unwrapped objects), the above
four combinations cover all reasonable combined cases of the three precision loss patterns.
We first evaluate the number of precision-critical methods reported by Zipper under different

flow combinations in Section 6.3.1, and then present the precision and efficiency of Zipper-guided
pointer analyses with respect to the different flow combinations in Section 6.3.2.

6.3.1 HowManyMethods Does ZipperConsider Precision-Critical, and HowDoes Each Precision Loss

Pattern Contribute? Figure 11 gives the numbers of precision-critical methods reported by Zipper
under the different combinations of direct, wrapped, and unwrapped flow. #Reachable Methods de-
notes the numbers of methods that are reachable by Zipper’s pre-analysis, i.e., a context-insensitive
pointer analysis. Let us first focus on Direct+Wrapped+Unwrapped, which denotes the combination
of all the three patterns and also represents the final results of Zipper. On average, Zipper reports
that only 38% of the methods need contexts per program under Direct+Wrapped+Unwrapped. As
shown in Section 6.1.1, applying context sensitivity to only this 38% of the methods is able to
preserve 98.8% of the precision of conventional 2-object-sensitive pointer analysis.
In Figure 11, we can see that Zipper reports that 22.3% of the methods need contexts un-

der Direct, 36.4% under Direct+Wrapped, and 24.8% under Direct+Unwrapped, which shows
that wrapped flow introduces significantly more precision-critical methods than unwrapped flow.
Direct+Unwrapped introduces 2.5%moremethods than Direct, while Direct+Wrapped+Unwrapped
introduces 1.6% more methods than Direct+Wrapped. This means that some methods are involved
in multiple precision loss patterns, e.g., both wrapped flow and unwrapped flow, simultaneously.

6.3.2 How Does Each Precision Loss Pattern Affect the Precision and Efficiency of Zipper-Guided

Pointer Analysis? We evaluate the impact of each precision loss pattern by using Zipper with
different combinations of patterns to guide 2obj analysis.

Precision. To evaluate the precision of 2obj under Zipper’s different elements, we focus on the
#poly-call metric as it is one of the most representative metrics and also widely considered in Java
pointer analysis research [Jeong et al. 2017; Kastrinis and Smaragdakis 2013; Lhoták and Hendren
2006; Smaragdakis et al. 2011, 2014; Sridharan et al. 2005; Tan et al. 2017]. It denotes the number of

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:26 Yue Li, Tian Tan, Anders Møller, and Yannis Smaragdakis

4
 6

8
1

1
 4

4
4

4
 1

1
3

2
 9

2
5

5
 0

1
3

1
 3

3
4

1
 8

5
2

3
 5

8
5

1
 8

9
8

2
 0

1
4

1
 3

8
1

4
 0

1
1

2
 8

6
2

4
 9

2
4

1
 2

5
9

1
 7

8
7

3
 4

8
8

1
 8

1
5

1
 9

5
5

3
 5

0
7

1
 0

6
6

3
 4

0
4

2
 1

9
0

4
 2

4
1

1
 0

2
0 1

 3
9

0

2
 8

7
2

1
 5

5
4

1
 4

5
5

1
 2

9
9

3
 8

2
6

2
 6

3
0

4
 7

7
5

1
 2

0
8

1
 7

0
2

3
 3

0
2

1
 7

6
6

1
 8

1
3

3
 5

0
1

1
 0

5
9

3
 3

9
1

2
 1

9
0

4
 2

3
1

1
 0

1
3 1

 3
8

4

2
 8

6
0

1
 5

4
2

1
 4

4
9

batik checkstyle sunflow findbugs jpc ecl ipse chart fop xalan bloat

ci

Direct

Direct+Wrapped

Direct+Unwrapped

Direct+Wrapped+Unwrapped

Fig. 12. #poly-call for different combinations of the basic precision loss patterns.

virtual calls that cannot be disambiguated into monomorphic calls. Generally, a pointer analysis
with better precision can disambiguate more virtual calls and reports smaller #poly-call.

Figure 12 shows #poly-call as reported by the Zipper-guided pointer analyses under different
combinations of direct, wrapped, and unwrapped flow. We use the #poly-call reported by the
context-insensitive pointer analysis (denoted by ci) as the baseline. Overall, Zipper with more flow
patterns enabled achieves better precision. (batik lacks data for Direct and Direct+Unwrapped
since the pointer analysis cannot terminate within the time budget under these two combinations;
the reason will be discussed later.)

The direct flow pattern covers simple object flow (e.g., getter/setter methods), which is common
in Java programs. However, Figure 12 shows, perhaps surprisingly, that Zipper under Direct is
only slightly more precise than context-insensitive pointer analysis. These results demonstrate
that only applying context sensitivity to the methods involved in direct flow is far from sufficient
for achieving good precision.

When wrapped flow comes into play, the precision improves significantly. For example, compared
to Direct, Zipper under Direct+Wrapped further eliminates 683 false polymorphic calls for jpc,
and this improvement is much greater than that of Direct compared to ci (89 calls). The data for
other programs exhibit similar trends, which means that wrapped flow is the key to preserving the
precision of conventional object-sensitivity.

Unwrapped flow is also useful for improving precision. For example, for sunflow, Zipper under
Direct+Unwrapped eliminates 185 false polymorphic calls based on Direct. However, the improve-
ments of unwrapped flow become less significant after combining with wrapped flow. For example,
for sunflow, Zipper under Direct+Wrapped+Unwrapped only eliminates 13 false polymorphic
calls based on Direct+Wrapped. One reason is that some precision-critical methods introduced by
unwrapped flow can also be introduced by wrapped flow, as discussed in Section 6.3.1.

Efficiency. Table 3 gives the elapsed time of Zipper-guided pointer analysis under different
combinations of the three precision loss patterns. Generally, when more patterns are enabled,
Zipper reports more methods as precision-critical, and the corresponding guided pointer analysis
runs faster. For all programs,Zipper under Direct+Wrapped runs faster than Direct alone, and for 6
out of 10 programs, Zipper under Direct+Wrapped+Unwrapped runs faster than Direct+Wrapped.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

A Principled Approach to Selective Context Sensitivity for Pointer Analysis 1:27

Table 3. The corresponding performance (seconds) of the analyses in Figure 12.

batik checkstyle sunflow findbugs jpc eclipse chart fop xalan bloat

Direct – 529 1 690 2 486 2 100 128 441 3 020 283 3 254
Direct+Wrapped 926 302 556 932 230 75 83 471 127 3 024
Direct+Unwrapped – 513 3 039 3 255 3 630 117 633 5 664 278 3 439
Direct+Wrapped+Unwrapped 1 037 378 567 908 229 72 82 520 116 2 971

Table 4. Precision metrics of different analyses on the simple benchmarks.

Program Pointer #fail- #poly- #reach- #call- Program Pointer #fail- #poly- #reach- #call-
analysis cast call mtd edge analysis cast call mtd edge

antlr

ci 992 1 776 7 794 53 468

luindex

ci 734 940 6 670 33 130
2obj 428 1 520 7 357 49 348 2obj 297 675 6 256 29 021

Zipper-2obj 452 1 530 7 361 49 400 Zipper-2obj 327 686 6 259 29 076
introA-2obj 990 1 694 7 783 53 071 introA-2obj 617 802 6 600 32 370
introB-2obj 640 1 560 7 448 50 257 introB-2obj 450 714 6 316 29 835

lusearch

ci 844 1 133 7 352 36 343

pmd

ci 1 263 1 039 8 427 42 415
2obj 299 850 6 904 31 811 2obj 657 718 7 648 35 563

Zipper-2obj 322 864 6 907 31 869 Zipper-2obj 676 728 7 654 35 626
introA-2obj 681 981 7 277 35 531 introA-2obj 1 136 882 8 351 41 674
introB-2obj 462 891 6 970 32 656 introB-2obj 859 777 7 929 37 379

These results clearly demonstrate that losing precision may also introduce performance decline.
This is especially common for context-sensitive pointer analysis, as spurious data flow (caused
by imprecision) will be replicated and propagated under different contexts, which can make the
pointer analysis very inefficient. For example, Zipper under Direct and Direct+Unwrapped is less
precise than Direct+Wrapped+Unwrapped. While the first two analyses cannot even finish within
the time budget (1.5 hours) for batik, the last one requires just 1 037 seconds.

6.4 Precision of Zipper for Simple Programs

We also evaluate Zipper’s precision for those simple DaCapo 2006 benchmarks that were excluded
from our earlier presentation. Although Zipper would likely not be used for such programs (since
a highly-precise pointer analysis can already analyze them very quickly), it is interesting to ask if
it still maintains most of the precision of a highly-precise context-sensitive analysis (i.e., 2obj) for
these programs.

Table 4 shows the precision results of Zipper for the four simple DaCapo 2006 benchmarks. The
results demonstrate that Zipper is able to preserve most of the precision (98.3% on average) of
2obj even for such programs, which are outside the target domain of Zipper.

6.5 RQ4: Zipper for Other Context-Sensitivity Variants

We have demonstrated that Zipper is able to effectively preserve the precision of object-sensitivity,
which is the most precise conventional context-sensitivity variant for Java (Section 6.1). However,
it is beneficial to further investigate whether Zipper (and its underlying precision-loss principle) is
robust enough to preserve most of the precision also for other context-sensitivity variants.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:28 Yue Li, Tian Tan, Anders Møller, and Yannis Smaragdakis

Table 5. Performance and precision results for conventional call-site-sensitive (2cs) and Zipper-guided (Zipper-

2cs) pointer analyses.

Program Pointer analysis Time (s) #fail-cast #poly-call #reach-mtd #call-edge

batik
2cs 6 886 2 452 4 281 18 882 94 211

Zipper-2cs 2 534 2 453 4 291 18 883 94 240

checkstyle
2cs 2 277 863 1 285 9 766 54 171

Zipper-2cs 147 869 1 306 9 771 54 268

sunflow
2cs 5 570 2 504 3 827 19 556 100 701

Zipper-2cs 1 232 2 515 3 831 19 557 100 722

findbugs
2cs 3 812 2 056 2 648 12 926 72 118

Zipper-2cs 514 2 069 2 657 12 927 72 146

jpc
2cs 3 343 1 855 4 616 16 350 89 677

Zipper-2cs 813 1 857 4 621 16 352 89 704

eclipse
2cs 1 896 886 1 186 8 195 42 872

Zipper-2cs 144 887 1 198 8 198 42 923

chart
2cs 2 705 1 481 1 691 11 722 59 691

Zipper-2cs 552 1 483 1 696 11 725 59 707

fop
2cs 5 503 1 975 3 254 16 700 79 524

Zipper-2cs 1 838 1 977 3 264 16 700 79 578

xalan
2cs 1 927 919 1 738 9 339 48 763

Zipper-2cs 227 921 1 770 9 342 49 031

bloat
2cs 5 712 1 699 1 793 8 703 58 696

Zipper-2cs 3 308 1 701 1 816 8 717 58 819

In this section, we consider three representative context-sensitivity variants: 2-call-site-sensitivity
(2cs) for call-site sensitivity [Sharir and Pnueli 1981], 2-type-sensitivity (2type) for type sensi-
tivity [Smaragdakis et al. 2011] and selective-2-object-sensitivity (s2obj) for hybrid context sen-
sitivity [Kastrinis and Smaragdakis 2013]. These variants often appear in recent literature [Jeon
et al. 2018; Jeong et al. 2017; Smaragdakis et al. 2014; Tan et al. 2016, 2017]. The precision and
performance results of the three analyses and their corresponding Zipper-guided versions are
shown in Tables 5–7. On average, Zipper-guided pointer analysis achieves 6.6×, 1.3×, and 2.9×
speedups for 2cs, 2type, and s2obj, respectively. The precision results are summarized as follows.

• For call-site sensitivity, on average 99.7% of the precision of 2cs can be preserved by Zipper
considering all client analyses. Specifically, the average number for each client analysis is
99.7% for #fail-cast, 99.3% for #poly-call, 99.97% for #reach-mtd and 99.9% for #call-edge.
• For type sensitivity, on average 99.2% of the precision of 2type can be preserved by Zipper
considering all client analyses. Specifically, the average number for each client analysis is
97.9% for #fail-cast, 99.2% for #poly-call, 99.9% for #reach-mtd and 99.8% for #call-edge.
• For hybrid (call-site + object) sensitivity, on average 99.0% of the precision of s2obj can be
preserved by Zipper considering all client analyses. Specifically, the average number for each
client analysis is 97.6% for #fail-cast, 99.0% for #poly-call, 99.8% for #reach-mtd and 99.7% for
#call-edge.

In summary, these results demonstrate that the theoretical foundation of Zipper is general
enough to effectively identify the precision-critical methods for a wide range of conventional
context sensitivity variants.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

A Principled Approach to Selective Context Sensitivity for Pointer Analysis 1:29

Table 6. Performance and precision results for conventional type-sensitive (2type) and Zipper-guided (Zipper-

2type) pointer analyses.

Program Pointer analysis Time (s) #fail-cast #poly-call #reach-mtd #call-edge

batik
2type 378 1 938 3 623 16 892 77 337

Zipper-2type 239 1 941 3 617 16 894 77 351

checkstyle
2type 125 695 1 122 9 534 49 274

Zipper-2type 82 711 1 140 9 544 49 436

sunflow
2type 197 2 247 3 506 19 315 90 967

Zipper-2type 136 2 262 3 510 19 316 91 022

findbugs
2type 265 1 683 2 345 12 674 66 443

Zipper-2type 179 1 703 2 349 12 678 66 488

jpc
2type 128 1 599 4 328 15 908 81 527

Zipper-2type 98 1 614 4 336 15 911 81 559

eclipse
2type 57 665 1 031 7 933 38 337

Zipper-2type 50 714 1 063 7 967 38 677

chart
2type 84 1 155 1 446 11 439 52 965

Zipper-2type 79 1 175 1 451 11 444 53 011

fop
2type 251 1 753 2 930 16 477 71847

Zipper-2type 189 1 777 2 943 16 482 71 922

xalan
2type 99 729 1 565 9 151 45 444

Zipper-2type 79 758 1 578 9 160 45 566

bloat
2type 74 1 486 1 626 8 523 54 279

Zipper-2type 73 1 508 1 642 8 536 54 424

Table 7. Performance and precision results for conventional hybrid context-sensitive (s2obj) and Zipper-guided

(Zipper-s2obj) pointer analyses.

Program Pointer analysis Time (s) #fail-cast #poly-call #reach-mtd #call-edge

batik
s2obj 3 619 1 463 3 485 16 857 76 751

Zipper-s2obj 1 040 1 471 3 493 16 861 76 795

checkstyle
s2obj 1 226 500 1 030 9 511 48 794

Zipper-s2obj 280 516 1 053 9 522 48 936

sunflow
s2obj 1 466 1 674 3 376 19 243 89 831

Zipper-s2obj 612 1 700 3 380 19 245 89 862

findbugs
s2obj 2 485 1 326 2 181 12 656 65 835

Zipper-s2obj 941 1 346 2 189 12 661 65 875

jpc
s2obj 672 1 240 4 217 15 850 80 996

Zipper-s2obj 257 1 251 4 223 15 855 81 031

eclipse
s2obj 121 456 979 7 910 38 149

Zipper-s2obj 68 480 1 012 7 926 38 361

chart
s2obj 301 757 1 378 11 328 52 370

Zipper-s2obj 105 774 1 383 11 332 52 392

fop
s2obj 1 290 1 295 2 834 16 436 71 370

Zipper-s2obj 528 1 308 2 846 16 439 71 432

xalan
s2obj 670 447 1 518 9 043 44 787

Zipper-s2obj 118 473 1 541 9 128 45 328

bloat
s2obj 3 485 1 125 1 426 8 469 53 142

Zipper-s2obj 3 011 1 146 1 447 8 485 53 287

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:30 Yue Li, Tian Tan, Anders Møller, and Yannis Smaragdakis

6.6 RQ5: Effectiveness of Zipper
e
-Guided Pointer Analysis

Zippere offers the promise of being almost as precise as the default Zipper algorithm, yet with
significantly enhanced scalability. We evaluate the effectiveness of Zippere -guided pointer analysis
using 20 input programs, including 10 large or complex programs for which both 2obj and Zipper-
guided object-sensitive analysis (Zipper-2obj) are not scalable. To the best of our knowledge,
compared with existing literature about whole-program pointer analysis for Java, this experiment
includes the largest set of hard-to-analyze Java programs. All 20 programs and the analysis results
for them are shown in Table 8.

6.6.1 Efficiency and Precision of Zipper
e
-Guided Pointer Analysis. Generally, on the 10 programs for

which 2obj scales, Zipper-guided pointer analysis (Zippere -2obj) preserves 94.7% of the precision
for 2obj for a speedup of 25.5×, on average. In addition, on the 10 programs for which 2obj fails
to scale (i.e., does not terminate in 3 hours), on average, Zippere can guide 2obj to finish analyzing
them in less than 11 minutes with good precision.

To better understand the efficiency and precision trade-off made by Zippere , let us first recall the
effectiveness of other analyses in Table 8: context-insensitive pointer analysis (CI), introspective
analyses, IntroA and IntroB [Smaragdakis et al. 2014]. CI is the fastest pointer analysis but with
the worst precision. Being a selective context-sensitive pointer analysis, IntroA is an extremely
fast and scalable pointer analysis and can achieve strictly better precision than CI, and IntroB is
strictly more precise but less efficient than IntroA in practice. In addition, we compare Zippere with
Scaler, a state-of-the-art scalability-first pointer analysis [Li et al. 2018b], which also emphasizes
scalability with good precision. With this background information, we summarize the results in
Table 8 as follows.
• Zippere -2obj is scalable for 19 programs, and IntroA is scalable for all 20 programs.
• Zippere -2obj is faster than IntroA in 15 out of 20 programs.
• Zippere -2obj is even faster than CI for 5 programs.
• Zippere -2obj is as fast as CI (the difference is 10% on average, ranging from 2 to 11 seconds
only) for another 6 programs. IntroA is notably slower than CI (at least 2× slowdown) for
most (15 out of 20) programs.
• Zippere -2obj is significantly more precise than IntroA in all 76 available precision numbers
(76 = 19 programs × 4 precision metrics).
• Zippere -2obj is even more precise than IntroB in most cases (48 out of 60 precision numbers)
on the programs for which both analyses are scalable (60 = 15 programs × 4 precision metrics,
IntroB is unscalable for 4 programs).
• For the first 10 programs (for which 2obj is scalable), on average, Scaler preserves 96.7%
of the precision for 2obj for a speedup of 4.0×, while Zippere -2obj preserves 94.7% of the
precision for 2obj for a speedup of 25.5×.
• For the last 10 programs (for which 2obj is not scalable), on average, Zippere -2obj greatly
outperforms Scaler in 7-of-10 cases (with a median speedup of 6.4×). Zippere -2obj and
Scaler both greatly improve on the precision of CI (client precision metrics see an average
15.8% and 16.1% reduction for Zippere -2obj and Scaler, respectively).

Below, we further explain and discuss some interesting results.

How to Make Zippere -2obj Scalable for Soot? Given the results in Table 8, Zippere -2obj cannot
finish analyzing soot within 3 hours—the only such case in our benchmark set. This means that
some efficiency-critical methods in soot are still not identified and excluded by Zippere under
its default threshold setting (PV = 5%). But this is not the end of story for soot. As explained in
Section 5, we can tune the analysis efficiency and precision by changing the PV value. Recall that

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

A Principled Approach to Selective Context Sensitivity for Pointer Analysis 1:31

Table 8. Performance and precision results for context-insensitive (ci), conventional object-sensitive (2obj),

Zipper
e
-guided (Zipper

e
-2obj), introspective (introX-2obj), and Scaler-guided (Scaler) pointer analyses.

Program Pointer analysis Time (s) #fail-cast #poly-call #reach-mtd #call-edge

batik

ci 84 2 961 4 681 19 197 101 616
2obj 3 300 1 606 3 491 16 859 76 807

Zippere -2obj 88 1 745 3 664 16 909 77 874
introA-2obj 265 2 675 4 262 19 011 97 120
introB-2obj 2 527 2 149 3 997 18 703 90 126
Scaler 544 1 913 3 597 16 931 77 517

checkstyle

ci 51 1 114 1 444 9 866 57 490
2obj 2 003 581 1 035 9 513 48 809

Zippere -2obj 87 757 1 134 9 652 50 376
introA-2obj 134 970 1 206 9 769 55 736
introB-2obj 1 781 792 1 134 9 595 51 437
Scaler 260 625 1 038 9 514 49 053

sunflow

ci 62 3 003 4 113 19 773 106 410
2obj 1 208 1 837 3 385 19 245 89 866

Zippere -2obj 64 2 031 3 561 19 319 90 723
introA-2obj 160 2 764 3 796 19 651 103 536
introB-2obj 413 2 346 3 529 19 429 95 602
Scaler 783 2 098 3 429 19 297 90 281

findbugs

ci 53 2 508 2 925 13 036 77 370
2obj 2 661 1 409 2 182 12 657 65 836

Zippere -2obj 97 1 488 2 215 12 689 66 274
introA-2obj 196 2 271 2 422 12 960 73 681
introB-2obj 419 2 024 2 372 12 882 70 725
Scaler 292 1 452 2 195 12 676 66 177

jpc

ci 57 2 370 5 013 17 146 96 669
2obj 559 1 392 4 222 15 852 81 030

Zippere -2obj 51 1 516 4 350 15 895 81 743
introA-2obj 132 2 169 4 703 17 038 95 170
introB-2obj 329 1 736 4 327 16 001 85 316
Scaler 357 1 617 4 297 16 082 81 962

eclipse

ci 26 1 139 1 334 8 465 45 474
2obj 146 546 980 7 911 38 151

Zippere -2obj 28 664 1 075 7 981 38 984
introA-2obj 59 977 1 118 8 319 43 781
introB-2obj 75 764 1 046 8 001 39 876
Scaler 142 554 981 7 912 38 153

chart

ci 50 1 810 1 852 12 064 63 453
2obj 282 883 1 378 11 330 52 374

Zippere -2obj 44 1 025 1 453 11 383 52 866
introA-2obj 135 1 580 1 613 11 952 61 323
introB-2obj 198 1 236 1 497 11 518 55 594
Scaler 273 976 1 402 11 530 53 198

fop

ci 78 2 458 3 585 17 154 84 330
2obj 1 200 1 446 2 844 16 438 71 408

Zippere -2obj 89 1 588 2 980 16 505 72 311
introA-2obj 212 2 206 3 246 17 007 82 113
introB-2obj 561 1 804 2 979 16 571 75 770
Scaler 503 1 732 2 945 16 676 72 556

xalan

ci 43 1 182 1 898 9 705 51 302
2obj 1 093 533 1 522 9 047 44 871

Zippere -2obj 45 633 1 612 9 171 45 886
introA-2obj 117 1 129 1 765 9 637 50 659
introB-2obj 755 723 1 579 9 119 45 904
Scaler 694 579 1 523 9 050 44 887

bloat

ci 32 1 924 2 014 8 939 61 150
2obj 3 525 1 193 1 427 8 470 53 143

Zippere -2obj 40 1 279 1 479 8 520 53 628
introA-2obj 61 1 809 1 690 8 869 60 111
introB-2obj 141 1 621 1 522 8 626 55 455
Scaler 433 1 222 1 465 8 495 53 867

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:32 Yue Li, Tian Tan, Anders Møller, and Yannis Smaragdakis

Program Pointer analysis Time (s) #fail-cast #poly-call #reach-mtd #call-edge

jython

ci 110 2 234 2 778 12 718 114 856
2obj >3h — — — —

Zippere -2obj 134 1 781 2 486 12 026 107 113
introA-2obj 417 2 202 2 632 12 663 114 095
introB-2obj >3h — — — —
Scaler 495 1 852 2 500 12 167 107 410

hsqldb

ci 60 1 662 1 592 11 486 63 790
2obj >3h — — — —

Zippere -2obj 119 1 032 1 261 10 440 51 261
introA-2obj 110 1 558 1 482 11 367 60 333
introB-2obj 313 1 034 1 260 10 378 51 278
Scaler 388 1 120 1 197 10 639 52 063

pmd5

ci 71 2 948 4 183 15 254 104 457
2obj >3h — — — —

Zippere -2obj 414 2 153 3 634 14 908 93 516
introA-2obj 385 2 820 3 823 15 117 101 762
introB-2obj 3 233 2 524 3 694 15 006 96 565
Scaler 777 2 176 3 536 14 895 92 775

jedit

ci 112 3 382 4 749 21 006 118 426
2obj >3h — — — —

Zippere -2obj 100 2 304 4 065 20 418 98 290
introA-2obj 369 3 091 4 409 20 849 114 875
introB-2obj 5 582 2 595 4 070 20 504 103 557
Scaler 1 741 2 377 3 990 20 499 97 999

soot

ci 1 059 16 570 16 532 32 459 415 476
2obj >3h — — — —

Zippere -2obj >3h — — — —
Zippere -2obj (0.5%) 797 10 673 14 666 31 965 326 092

introA-2obj 1 428 16 503 15 947 32 390 413 083
introB-2obj 6 365 15 474 14 895 32 222 319 431
Scaler 1 358 10 549 14 822 31 982 374 877

eclipse-r

ci 141 4 190 9 197 20 862 161 222
2obj >3h — — — —

Zippere -2obj 3 052 3 223 8 599 20 499 148 037
introA-2obj 1 441 4 175 8 889 20 853 160 139
introB-2obj 550 3 640 8 539 20 491 149 980
Scaler 747 3 211 8 486 20 374 145 953

briss

ci 235 4 904 6 297 26 582 176 785
2obj >3h — — — —

Zippere -2obj 217 3 158 5 306 25 537 151 550
introA-2obj 628 4 889 6 076 26 507 175 565
introB-2obj >3h — — — —
Scaler 1 387 3 428 5 323 25 652 152 761

h2

ci 51 1 866 3 946 14 192 95 541
2obj >3h — — — —

Zippere -2obj 254 1 418 3 646 13 903 89 292
introA-2obj 173 1 711 3 746 14 078 93 233
introB-2obj 3 103 1 489 3 656 13 883 89 537
Scaler 1 997 1 373 3 605 13 850 88 268

gruntspud

ci 185 3 583 5 703 24 887 148 874
2obj >3h — — — —

Zippere -2obj 288 2 549 4 739 24 117 120 316
introA-2obj 526 3 326 5 338 24 739 144 851
introB-2obj >3h — — — —
Scaler 3 002 2 479 4 699 24 207 120 177

columba

ci 943 4 889 6 669 31 476 195 930
2obj >3h — — — —

Zippere -2obj 837 3 444 5 213 26 051 140 637
introA-2obj 3 356 4 582 6 249 31 100 187 401
introB-2obj >3h — — — —
Scaler 329 2 897 4 799 25 729 123 330

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

A Principled Approach to Selective Context Sensitivity for Pointer Analysis 1:33

PV serves as a criterion to select which methods may significantly degrade analysis efficiency. The
smaller the PV, the more methods are considered efficiency-critical. Therefore, we can decrease PV
to allow Zippere to identify and exclude more efficiency-critical methods so that fewer methods will
be analyzed context-sensitively, thereby increasing the chance of scalability. In an extra experiment
for soot (shown as Zippere -2obj (0.5%) in Table 8), we set PV to 0.5%, which allows Zippere -2obj to
finish analyzing soot in only 797 seconds (even faster than CI for soot, which costs 1 059 seconds).
This result demonstrates the flexibility of Zippere for balancing efficiency and precision.

Zippere -2obj vs. Scaler. The recent Scaler analysis [Li et al. 2018b] is an interesting comparison
target for Zippere , since it follows a very different design but with similar goals. Scaler is a
scalability-first analysis: it may not achieve full efficiency, nor full precision, but it will aim to avoid
worst-case running-time blowup due to potentially enormous points-to sets. (More discussion can
be found in Section 7.) Unlike introspective analyses and Zippere , which either apply one kind
of context sensitivity (e.g., 2obj) to a method or not, Scaler assigns different kinds of context
sensitivity to different methods. As seen in Table 8, Scaler is generally much more expensive
than Zippere , consistently with its design emphasis on avoiding worst-case behavior, rather than
targeting the specific program elements responsible for keeping good precision while making the
analysis as fast as possible. In two cases, however, (eclipse-r and columba) Scaler is both faster
and (slightly) more precise than Zippere , suggesting potential for future improvement. Notably,
the tuned Zippere -2obj (0.5%) on soot is both faster and more precise than Scaler, therefore more
advanced tuning may be the avenue to such improvement. As summarized in Section 6.6.1, Zippere
generally exhibits significantly better performance than Scaler with comparable precision.

Zippere -2obj Is Even Faster Than CI for Five Programs. According to existing literature, CI is the
fastest pointer analysis for Java, and a context-sensitive pointer analysis, whether conventional
or selective, is less efficient than CI [Bravenboer and Smaragdakis 2009; Hassanshahi et al. 2017;
Jeon et al. 2018; Jeong et al. 2017; Kastrinis and Smaragdakis 2013; Lhoták and Hendren 2003; Li
et al. 2018b; Milanova et al. 2005; Smaragdakis et al. 2011, 2014; Tan et al. 2016, 2017]. However,
as shown in Table 8, we find that Zippere -2obj (as a selective context-sensitive pointer analysis)
is faster than CI for five programs: jpc, chart, jedit, briss and columba. To the best of our
knowledge, these results demonstrate for the first time that a context-sensitive pointer analysis
can be faster than a context-insensitive one for a non-trivial portion of realistic programs. The
issue is not one of trade-off between context-sensitive and context-insensitive analyses—after all,
Zippere requires a CI pre-analysis in order to detect flow patterns. However, this surprising finding
prompts some rethinking of the relationship between the extra cost of computing and maintaining
context information and the saved cost in data propagation due to the improved precision of
context sensitivity. The Zippere results show that CI is not an upper bound of speed for Java pointer
analysis: for some programs it is possible to achieve better speed and precision simultaneously by
choosing the right methods to be analyzed context-sensitively.

6.6.2 Zipper
e
’s Effectiveness as a Pre-Analysis. Table 9 shows the overhead of running Zippere . On

average, Zippere spends 59 seconds on analyzing a program. This cost can be considered negligible
compared with the significant speedup achieved by Zippere as shown in Table 8. Noticeably, Zippere
spends more time on analyzing programs like jython and columba, which is not surprising as
these programs are more complex or larger than the rest. For example, jython is a well-known
hard-to-analyze program [Kastrinis and Smaragdakis 2013; Smaragdakis et al. 2014; Tan et al. 2017],
and even if using context-insensitivity, columba analysis still costs close to 1 000 seconds (Table 8).

As Zippere further excludes methods that may hurt efficiency, fewer methods will be analyzed
context-sensitively under its guidance. For all 20 evaluated programs, on average, Zipper reports

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:34 Yue Li, Tian Tan, Anders Møller, and Yannis Smaragdakis

Table 9. The overhead of running Zipper
e
.

Program batik checkstyle sunflow findbugs jpc eclipse chart fop xalan bloat

Zippere time (seconds) 26 8 20 6 14 3 7 18 5 4

Program jython hsqldb pmd5 jedit soot eclipse-r briss h2 gruntspud columba

Zippere time (seconds) 292 8 13 44 185 17 85 8 123 301

1
9

 1
9

7

9
 8

6
6

1
9

 7
7

3

1
3

 0
3

6

1
7

 1
4

6

8
 4

6
5

1
2

 0
6

4

1
7

 1
5

4

9
 7

0
5

8
 9

3
9

1
2

 7
1

8

1
1

 4
8

6

1
5

 2
5

4

2
1

 0
0

6

3
2

 4
5

9

2
0

 8
6

2

2
6

 5
8

2

1
4

 1
9

2

2
4

 8
8

7

3
1

 4
7

6

8
 2

6
1

3
 7

9
8

7
 8

8
3

4
 8

4
7

5
 9

0
6

3
 2

4
8

4
 1

5
5 6
 1

9
8

3
 6

6
4

3
 5

7
3

6
 3

2
4

4
 3

0
2 6
 1

1
7

8
 9

3
2

1
6

 7
8

0

9
 8

5
8 1
1

 5
8

1

5
 9

0
6

1
1

 4
7

4 1
4

 4
1

4

2
 3

6
1

1
 4

3
0

2
 2

7
7

2
 2

2
2

1
 9

4
4

1
 3

7
6

1
 4

2
8

2
 1

0
5

1
 3

8
3

1
 2

8
2

1
 4

7
5

1
 4

0
5

2
 4

8
8

2
 1

7
9

1
0

 2
3

7

3
 0

4
0

2
 6

1
4

1
 6

5
3

2
 5

4
1

2
 6

0
0

 0

5 000

10 000

15 000

20 000

25 000

30 000

35 000

#Reachable Methods Zipper Zipper e

Fig. 13. The numbers of methods selected for context sensitivity by Zipper and Zipper
e
.

41% of the methods as precision-critical, and by also considering efficiency-critical methods, Zippere
reduces the number of methods to be analyzed context sensitively to 14%. The number of methods
selected by Zipper and Zippere for each individual program is shown in Figure 13.

7 RELATEDWORK

In this section, we mainly discuss related work that leverages pre-analysis to achieve good precision
and efficiency balances for whole-program context-sensitive pointer analysis.
Introspective analysis [Smaragdakis et al. 2014] applies context sensitivity to a subset of the

program’s methods selected based on two heuristics, resulting in two introspective analyses, IntroA
and IntroB, which have been compared with Zipper in Section 6.2 and Zippere in Section 6.6.
Like Zipper and Zippere , introspective analysis first performs a cheap pre-analysis, i.e., a context-
insensitive pointer analysis, to extract required information to guide the main pointer analysis.
Unlike Zipper and Zippere , it relies on a set of six manually-selected metrics to define the two
heuristics for determining which methods are potentially precision-critical. As these heuristics
lack a theoretical explanation of when omitting context sensitivity for a method would introduce
imprecision, the precision-critical methods cannot be identified accurately by introspective analysis.
As a result, as shown in Sections 6.2 and 6.6, IntroB is less precise and less efficient than Zipper in
most cases, and IntroA runs faster but is significantly less precise than Zipper in all cases; Zippere
outperforms IntroA and IntroB in terms of both precision and efficiency in most cases.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

A Principled Approach to Selective Context Sensitivity for Pointer Analysis 1:35

Hassanshahi et al. [2017] also leverage manually-selected metrics to define some heuristics to
guide object-sensitive pointer analysis for large codebases. Their pre-analysis contains several
phases that each need different metrics and heuristics. Basically, a program kernel (where a call-
site-insensitive or object-sensitive pointer analysis may not be precise enough) is first extracted
based on a context-insensitive pointer analysis, and then this kernel is analyzed by a fixed object-
sensitive pointer analysis to determine the appropriate context depth for each selected object.
Such information is finally used to guide a selective object-sensitive pointer analysis, which has
been demonstrated to work well for the OpenJDK library [Hassanshahi et al. 2017]. However,
unlike introspective analysis [Smaragdakis et al. 2014], Zipper and Zippere , the overhead of their
pre-analysis is uncertain, as it is sensitive to the complexity of the extracted kernel, which further
depends on various threshold values given by the user before the pre-analysis.
Metrics and heuristics can be selected and defined manually, as in the above approaches [Has-

sanshahi et al. 2017; Smaragdakis et al. 2014], or can be learned from machine learning techniques,
as in the two pieces of work we describe next.
Wei and Ryder [2015] introduce an adaptive context-sensitive analysis for JavaScript. Some

user-specific method features are first extracted from an inexpensive pre-analysis, and a machine
learning algorithm is then applied to obtain the relationship between these method features and
the potential context-sensitivity candidates. The relationship is expressed as a decision tree, which
is further manually adjusted (based on domain knowledge) to produce certain heuristics. Guided
by these heuristics, different methods are finally analyzed with different context sensitivity.
Jeong et al. [2017] present a data-driven approach to guiding context-sensitive analysis for

Java. Unlike introspective analysis and Zipper, where for each method, context sensitivity is either
applied or not, the data-driven analysis assigns each method an appropriate context length including
zero (i.e., context insensitivity). By appropriately applying context sensitivity with deeper context
for only a subset of the methods, more efficient context-sensitive analysis can be achieved with good
precision. To assign an appropriate context length for each method, 25 metrics (atomic features)
are selected, and, based on these metrics, a machine learning approach is used to learn heuristics.
However, unlike Zipper’s lightweight pre-analysis, the learning phase is heavy and costs 54 hours
in Jeong et al.’s experimental setting. Still, the learned heuristics can help the main analysis scale
for even some trouble programs (e.g., jython) with good precision [Jeong et al. 2017]. Notably,
one reason that may contribute to the beneficial effect of the learned heuristics is that the training
programs and the testing programs partly share the same Java library code.

Generally, machine learning approaches are sensitive to the training process on the selected input
programs, and the learned results are usually difficult to explain, e.g., why the learning algorithm
considers methodA rather than B to be precision-critical. Instead, Zipper and Zippere are principled
approaches derived from the insight of identifying the precision-loss patterns inherent in a program;
thus their guiding is interpretable and their guided results are tractable, resulting in more stable
performance.
The Bean approach by Tan et al. [2016] is also based on a pre-analysis. Conventional context

sensitivity uses consecutive context elements for each context, whereas Bean identifies and skips
context elements that are useless for improving the precision. As a result, more space is saved and,
thus, more precision-useful context elements can be added to distinguish more contexts, making
the pointer analysis more precise with a small efficiency overhead. Instead of improving precision
by sacrificing some efficiency, Zipper and Zippere make a context-sensitive pointer analysis faster
while preserving most of its precision.

Scaler [Li et al. 2018b] achieves scalable context-sensitive points-to analysis by considering the
relationship between scalability and memory size. It leverages the object allocation graph (OAG)
proposed by Tan et al. [2016], to efficiently estimate the amount of context-sensitive points-to

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:36 Yue Li, Tian Tan, Anders Møller, and Yannis Smaragdakis

information that would be needed for each method. Then, given a threshold related to the available
memory size, Scaler selects an appropriate context-sensitivity variant for each method so that
the total amount of points-to information is bounded. As a result, Scaler utilizes the available
space to provide scalability while maximizing precision. Unlike Zipper which prioritizes precision,
Scaler is a scalability-first approach. The two techniques can perhaps be combined, using Scaler
to estimate the context-sensitive points-to information only for the precision-critical methods
identified by Zipper. As an approach to reducing analysis cost, unlike Scaler which may sacrifice
noticeable precision for ensuring scalability, Zippere still considers precision (by extending Zipper)
when selecting methods for context sensitivity. This explains why Zippere achieves very good
precision for all evaluated programs as demonstrated in Section 6.6.

Based on a cheap pre-analysis, Tan et al. [2017] presentMahjong, a heap abstraction for pointer
analysis of Java, which enables allocation-site-based pointer analysis to run significantly faster while
achieving almost the same precision for type-dependent clients, such as call graph construction. In
contrast, Zipper and Zippere work for general pointer analysis, including alias analysis (i.e., not
just type-dependent clients), which cannot be handled effectively by Mahjong.
Bean [Tan et al. 2016] and Scaler [Li et al. 2018b] leverage object allocation graphs (OAGs),

andMahjong [Tan et al. 2017] exploits field points-to graphs (FPGs), in a pre-analysis to extract
necessary information to guide a later main analysis. Similarly, in Zipper (and Zippere), we
introduce precision flow graphs (PFGs) to express the three kinds of value flow patterns (Section 3)
and identify the precision-critical methods by solving a graph reachability problem on the PFG
(Section 4.3). OAGs and FPGs cannot express value flow information and are therefore conceptually
different from PFGs. However, other graphs, conceptually similar to PFGs, are used in pointer
analysis, as briefly discussed next.
Li et al. [2011] leverage value flow graphs (VFGs) to accelerate pointer analysis for C/C++

programs. VFGs are also designed to express value flow information but they have several key
differences from PFGs. First, different from VFGs, the value flows in PFGs are defined on the basis
of classes and their In and Out methods. Second, the direct flows in PFGs can already capture the
value flows through load and store operations that are expressed as the indirect value flows in VFGs,
but VFGs cannot express the wrapped/unwrapped flows in PFGs. Finally, pointer information is
expressed differently in VFGs and PFGs.

Pointer assignment graphs (PAGs) are used as the representation of the analyzed program in Java
pointer analysis [Lhoták and Hendren 2003]. A field reference node in a PAG is a field dereference
on a variable while an object field node in a PFG is a field dereference on the object pointed to by
a variable. Thus, unlike PFGs, the value flow through load/store operations is not connected in
PAGs, e.g., given statements p.f = a and b = q.f, there is no path from a to b in the PAG even if
variables p and q point to the same object. Therefore, unlike PFGs, PAGs cannot express the flow of
objects in a program directly.
Demand-driven analyses (e.g., [Shang et al. 2012; Späth et al. 2016; Sridharan and Bodík 2006;

Sridharan et al. 2005; Sui and Xue 2016; Wang et al. 2017; Yan et al. 2011]) typically only compute
points-to information for program points that may affect a particular site of interest for specific
clients. In contrast, the Zipper and Zippere analyses as well as other whole-program pointer
analyses [Bravenboer and Smaragdakis 2009; Hassanshahi et al. 2017; Jeon et al. 2019, 2018; Jeong
et al. 2017; Kastrinis and Smaragdakis 2013; Lhoták and Hendren 2003, 2006; Li et al. 2018b; Milanova
et al. 2002, 2005; Smaragdakis et al. 2011, 2014; Tan et al. 2016, 2017; Thiessen and Lhoták 2017;
Whaley and Lam 2004] compute points-to information for all sites, thereby providing information
for all possible clients.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

A Principled Approach to Selective Context Sensitivity for Pointer Analysis 1:37

8 CONCLUSION

Context sensitivity is an important technique for ensuring high precision in pointer analysis for
Java. Previous work has shown that it is beneficial to apply context sensitivity selectively, instead
of uniformly for all methods, as conventionally done. However, it is challenging to determine when
a context-sensitive analysis will yield precision benefits, or, conversely, when omitting context
sensitivity for a method would introduce imprecision.
By introducing a model based on three general patterns of value flow (direct, wrapped, and

unwrapped flows), this article explains where and how most imprecision is introduced in a context-
insensitive pointer analysis. Themodel provides a foundation to efficiently identify precision-critical
methods in a principled way. Accordingly, we present two new selective context-sensitive pointer
analyses for Java, Zipper and Zippere . Both analyses are conceptually simple and easy to integrate
with existing pointer-analysis tools.

Extensive evaluation on standard benchmarks and real-world Java programs demonstrates
the effectiveness of the analyses. On average, Zipper preserves essentially all of the precision
(98.8%) of a highly-precise conventional context-sensitive pointer analysis (2obj), with a substantial
speedup (on average, 3.4× and up to 9.4×). As a result, one can consider using Zipper as a full
replacement of conventional highly-precise context-sensitive pointer analysis. In addition, Zipper
and its implementation provide a basis to further investigate the relation between context sensitivity
and the precision benefits it brings. Zippere is a prime outcome of such investigation: it preserves
94.7% of the precision of 2obj, with an order-of-magnitude speedup (on average, 25.5× and up to
88×). In addition, on 10 programs for which 2obj fails to terminate (within 3 hours), Zippere can
guide 2obj to analyze them in less than 11 minutes on average, and with very good precision. The
experimental evaluation of Zippere further shows that, for several programs, it is even possible
to simultaneously achieve faster and more precise pointer analysis than a context-insensitive
approach.
We believe that these results establish Zipper and Zippere as new sweet spots in the well-

established pointer analysis trade-off of precision and efficiency. Furthermore, we expect that the
approach offers interesting insights, leading into deep understanding of how context-sensitive
analysis achieves its significant precision gains.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their helpful comments. This work was supported in part
by National Key R&D Program (Grant #2017YFB1001801) and National Natural Science Foundation
(Grant #61690204) of China, and by the European Research Council (ERC) under the FP7 and
Horizon 2020 research and innovation programs (grant agreements 307334, 790340, and 647544).
The authors would also like to thank the support from the Collaborative Innovation Center of
Novel Software Technology and Industrialization, Jiangsu, China.

REFERENCES

Lars Ole Andersen. 1994. Program analysis and specialization for the C programming language. Ph.D. Dissertation. University
of Copenhagen.

Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel, Jacques Klein, Yves Le Traon, Damien
Octeau, and Patrick D. McDaniel. 2014. FlowDroid: precise context, flow, field, object-sensitive and lifecycle-aware taint
analysis for Android apps. In ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI
’14, Edinburgh, United Kingdom - June 09 - 11, 2014, Michael F. P. O’Boyle and Keshav Pingali (Eds.). ACM, 259–269.
https://doi.org/10.1145/2594291.2594299

Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khan, Kathryn S. McKinley, Rotem Bentzur, Amer Diwan,
Daniel Feinberg, Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony L. Hosking, Maria Jump, Han Bok Lee, J. Eliot B.
Moss, Aashish Phansalkar, Darko Stefanovic, Thomas VanDrunen, Daniel von Dincklage, and Ben Wiedermann. 2006.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://doi.org/10.1145/2594291.2594299

1:38 Yue Li, Tian Tan, Anders Møller, and Yannis Smaragdakis

The DaCapo benchmarks: Java benchmarking development and analysis. In Proceedings of the 21th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2006, October 22-26, 2006,
Portland, Oregon, USA, Peri L. Tarr and William R. Cook (Eds.). ACM, 169–190. https://doi.org/10.1145/1167473.1167488

Martin Bravenboer and Yannis Smaragdakis. 2009. Strictly declarative specification of sophisticated points-to analyses.
In Proceedings of the 24th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2009, October 25-29, 2009, Orlando, Florida, USA, Shail Arora and Gary T. Leavens (Eds.). ACM,
243–262. https://doi.org/10.1145/1640089.1640108

Satish Chandra, Stephen J. Fink, and Manu Sridharan. 2009. Snugglebug: a powerful approach to weakest preconditions. In
Proceedings of the 2009 ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2009, Dublin,
Ireland, June 15-21, 2009, Michael Hind and Amer Diwan (Eds.). ACM, 363–374. https://doi.org/10.1145/1542476.1542517

David R. Chase, Mark N. Wegman, and F. Kenneth Zadeck. 1990. Analysis of Pointers and Structures. In Proceedings of the
ACM SIGPLAN’90 Conference on Programming Language Design and Implementation (PLDI), White Plains, New York, USA,
June 20-22, 1990, Bernard N. Fischer (Ed.). ACM, 296–310. https://doi.org/10.1145/93542.93585

Stephen J. Fink, Eran Yahav, Nurit Dor, G. Ramalingam, and Emmanuel Geay. 2008. Effective typestate verification in the
presence of aliasing. ACM Trans. Softw. Eng. Methodol. 17, 2 (2008), 9:1–9:34. https://doi.org/10.1145/1348250.1348255

Michael I. Gordon, Deokhwan Kim, Jeff H. Perkins, Limei Gilham, Nguyen Nguyen, and Martin C. Rinard. 2015. Information
Flow Analysis of Android Applications in DroidSafe. In 22nd Annual Network and Distributed System Security Symposium,
NDSS 2015, San Diego, California, USA, February 8-11, 2015. The Internet Society. https://www.ndss-symposium.org/
ndss2015/information-flow-analysis-android-applications-droidsafe

Neville Grech and Yannis Smaragdakis. 2017. P/Taint: unified points-to and taint analysis. PACMPL 1, OOPSLA (2017),
102:1–102:28. https://doi.org/10.1145/3133926

Behnaz Hassanshahi, Raghavendra Kagalavadi Ramesh, Padmanabhan Krishnan, Bernhard Scholz, and Yi Lu. 2017. An
efficient tunable selective points-to analysis for large codebases. In Proceedings of the 6th ACM SIGPLAN International
Workshop on State Of the Art in Program Analysis, SOAP@PLDI 2017, Barcelona, Spain, June 18, 2017, Karim Ali and
Cristina Cifuentes (Eds.). ACM, 13–18. https://doi.org/10.1145/3088515.3088519

Michael Hind. 2001. Pointer analysis: haven’t we solved this problem yet?. In Proceedings of the 2001 ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis For Software Tools and Engineering, PASTE’01, Snowbird, Utah, USA, June 18-19, 2001, John
Field and Gregor Snelting (Eds.). ACM, 54–61. https://doi.org/10.1145/379605.379665

Minseok Jeon, Sehun Jeong, Sungdeok Cha, and Hakjoo Oh. 2019. AMachine-Learning Algorithmwith Disjunctive Model for
Data-Driven Program Analysis. ACM Trans. Program. Lang. Syst. 41, 2 (2019), 13:1–13:41. https://doi.org/10.1145/3293607

Minseok Jeon, Sehun Jeong, and Hakjoo Oh. 2018. Precise and Scalable Points-to Analysis via Data-driven Context Tunneling.
Proc. ACM Program. Lang. 2, OOPSLA, Article 140 (Oct. 2018), 29 pages. https://doi.org/10.1145/3276510

Sehun Jeong, Minseok Jeon, Sung Deok Cha, and Hakjoo Oh. 2017. Data-driven context-sensitivity for points-to analysis.
PACMPL 1, OOPSLA (2017), 100:1–100:28. https://doi.org/10.1145/3133924

Vini Kanvar and Uday P. Khedker. 2016. Heap Abstractions for Static Analysis. ACM Comput. Surv. 49, 2, Article 29 (June
2016), 47 pages. https://doi.org/10.1145/2931098

George Kastrinis and Yannis Smaragdakis. 2013. Hybrid context-sensitivity for points-to analysis. In ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’13, Seattle, WA, USA, June 16-19, 2013, Hans-
Juergen Boehm and Cormac Flanagan (Eds.). ACM, 423–434. https://doi.org/10.1145/2462156.2462191

Ondrej Lhoták and Laurie J. Hendren. 2003. Scaling Java Points-to Analysis Using SPARK. In Compiler Construction, 12th
International Conference, CC 2003, Held as Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2003, Warsaw, Poland, April 7-11, 2003, Proceedings (Lecture Notes in Computer Science), Görel Hedin (Ed.), Vol. 2622.
Springer, 153–169. https://doi.org/10.1007/3-540-36579-6_12

Ondrej Lhoták and Laurie J. Hendren. 2006. Context-Sensitive Points-to Analysis: Is It Worth It?. In Compiler Construction,
15th International Conference, CC 2006, Held as Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2006, Vienna, Austria, March 30-31, 2006, Proceedings (Lecture Notes in Computer Science), Alan Mycroft and Andreas
Zeller (Eds.), Vol. 3923. Springer, 47–64. https://doi.org/10.1007/11688839_5

Lian Li, Cristina Cifuentes, and Nathan Keynes. 2011. Boosting the Performance of Flow-sensitive Points-to Analysis Using
Value Flow. In Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European Conference on Foundations of
Software Engineering (Szeged, Hungary) (ESEC/FSE ’11). ACM, New York, NY, USA, 343–353. https://doi.org/10.1145/
2025113.2025160

Yue Li, Tian Tan, Anders Møller, and Yannis Smaragdakis. 2018a. Precision-guided Context Sensitivity for Pointer Analysis.
Proc. ACM Program. Lang. 2, OOPSLA, Article 141 (Oct. 2018), 29 pages. https://doi.org/10.1145/3276511

Yue Li, Tian Tan, Anders Møller, and Yannis Smaragdakis. 2018b. Scalability-First Pointer Analysis with Self-Tuning Context-
Sensitivity. In Proc. 12th joint meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium
on the Foundations of Software Engineering (ESEC/FSE). ACM, 129–140. https://doi.org/10.1145/3236024.3236041

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://doi.org/10.1145/1167473.1167488
https://doi.org/10.1145/1640089.1640108
https://doi.org/10.1145/1542476.1542517
https://doi.org/10.1145/93542.93585
https://doi.org/10.1145/1348250.1348255
https://www.ndss-symposium.org/ndss2015/information-flow-analysis-android-applications-droidsafe
https://www.ndss-symposium.org/ndss2015/information-flow-analysis-android-applications-droidsafe
https://doi.org/10.1145/3133926
https://doi.org/10.1145/3088515.3088519
https://doi.org/10.1145/379605.379665
https://doi.org/10.1145/3293607
https://doi.org/10.1145/3276510
https://doi.org/10.1145/3133924
https://doi.org/10.1145/2931098
https://doi.org/10.1145/2462156.2462191
https://doi.org/10.1007/3-540-36579-6_12
https://doi.org/10.1007/11688839_5
https://doi.org/10.1145/2025113.2025160
https://doi.org/10.1145/2025113.2025160
https://doi.org/10.1145/3276511
https://doi.org/10.1145/3236024.3236041

A Principled Approach to Selective Context Sensitivity for Pointer Analysis 1:39

Yue Li, Tian Tan, Yifei Zhang, and Jingling Xue. 2016. Program Tailoring: Slicing by Sequential Criteria. In 30th European
Conference on Object-Oriented Programming, ECOOP 2016, July 18-22, 2016, Rome, Italy (LIPIcs), Shriram Krishnamurthi
and Benjamin S. Lerner (Eds.), Vol. 56. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 15:1–15:27. https://doi.org/
10.4230/LIPIcs.ECOOP.2016.15

Benjamin Livshits and Monica S. Lam. 2005. Finding Security Vulnerabilities in Java Applications with Static Analysis. In
Proceedings of the 14th USENIX Security Symposium, Baltimore, MD, USA, July 31 - August 5, 2005, Patrick D. McDaniel
(Ed.). USENIX Association.

Ana Milanova, Atanas Rountev, and Barbara G. Ryder. 2002. Parameterized object sensitivity for points-to and side-effect
analyses for Java. In Proceedings of the International Symposium on Software Testing and Analysis, ISSTA 2002, Roma, Italy,
July 22-24, 2002, Phyllis G. Frankl (Ed.). ACM, 1–11. https://doi.org/10.1145/566172.566174

Ana Milanova, Atanas Rountev, and Barbara G. Ryder. 2005. Parameterized object sensitivity for points-to analysis for Java.
ACM Trans. Softw. Eng. Methodol. 14, 1 (2005), 1–41. https://doi.org/10.1145/1044834.1044835

Mayur Naik, Alex Aiken, and John Whaley. 2006. Effective static race detection for Java. In Proceedings of the ACM
SIGPLAN 2006 Conference on Programming Language Design and Implementation, Ottawa, Ontario, Canada, June 11-14,
2006, Michael I. Schwartzbach and Thomas Ball (Eds.). ACM, 308–319. https://doi.org/10.1145/1133981.1134018

Mayur Naik, Chang-Seo Park, Koushik Sen, and David Gay. 2009. Effective static deadlock detection. In 31st International
Conference on Software Engineering, ICSE 2009, May 16-24, 2009, Vancouver, Canada, Proceedings. IEEE, 386–396. https:
//doi.org/10.1109/ICSE.2009.5070538

Hakjoo Oh, Wonchan Lee, Kihong Heo, Hongseok Yang, and Kwangkeun Yi. 2014. Selective Context-sensitivity Guided
by Impact Pre-analysis. In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and
Implementation (Edinburgh, United Kingdom) (PLDI ’14). ACM, New York, NY, USA, 475–484. https://doi.org/10.1145/
2594291.2594318

Michael Pradel, Ciera Jaspan, Jonathan Aldrich, and Thomas R. Gross. 2012. Statically checking API protocol conformance
with mined multi-object specifications. In 34th International Conference on Software Engineering, ICSE 2012, June 2-9,
2012, Zurich, Switzerland, Martin Glinz, Gail C. Murphy, and Mauro Pezzè (Eds.). IEEE Computer Society, 925–935.
https://doi.org/10.1109/ICSE.2012.6227127

Bernhard Scholz, Herbert Jordan, Pavle Subotic, and Till Westmann. 2016. On fast large-scale program analysis in Datalog.
In Proceedings of the 25th International Conference on Compiler Construction, CC 2016, Barcelona, Spain, March 12-18, 2016,
Ayal Zaks and Manuel V. Hermenegildo (Eds.). ACM, 196–206. https://doi.org/10.1145/2892208.2892226

Lei Shang, Xinwei Xie, and Jingling Xue. 2012. On-demand dynamic summary-based points-to analysis. In 10th Annual
IEEE/ACM International Symposium on Code Generation and Optimization, CGO 2012, San Jose, CA, USA, March 31 - April
04, 2012. ACM, 264–274. https://doi.org/10.1145/2259016.2259050

Micha Sharir and Amir Pnueli. 1981. Two approaches to interprocedural data flow analysis. Prentice-Hall, Chapter 7, 189–234.
Olin Shivers. 1991. Control-flow analysis of higher-order languages. Ph.D. Dissertation. Carnegie Mellon University.
Yannis Smaragdakis and George Balatsouras. 2015. Pointer Analysis. Foundations and Trends in Programming Languages 2,

1 (2015), 1–69. https://doi.org/10.1561/2500000014
Yannis Smaragdakis, George Balatsouras, and George Kastrinis. 2013. Set-based Pre-processing for Points-to Analysis. In

Proceedings of the 2013 ACM SIGPLAN International Conference on Object Oriented Programming Systems Languages &
Applications (Indianapolis, Indiana, USA) (OOPSLA ’13). ACM, New York, NY, USA, 253–270. https://doi.org/10.1145/
2509136.2509524

Yannis Smaragdakis, Martin Bravenboer, and Ondrej Lhoták. 2011. Pick your contexts well: understanding object-sensitivity.
In Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2011, Austin,
TX, USA, January 26-28, 2011, Thomas Ball and Mooly Sagiv (Eds.). ACM, 17–30. https://doi.org/10.1145/1926385.1926390

Yannis Smaragdakis, George Kastrinis, and George Balatsouras. 2014. Introspective analysis: context-sensitivity, across the
board. In ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’14, Edinburgh, United
Kingdom - June 09 - 11, 2014, Michael F. P. O’Boyle and Keshav Pingali (Eds.). ACM, 485–495. https://doi.org/10.1145/
2594291.2594320

Johannes Späth, Lisa Nguyen Quang Do, Karim Ali, and Eric Bodden. 2016. Boomerang: Demand-Driven Flow- and
Context-Sensitive Pointer Analysis for Java. In 30th European Conference on Object-Oriented Programming, ECOOP 2016,
July 18-22, 2016, Rome, Italy. 22:1–22:26. https://doi.org/10.4230/LIPIcs.ECOOP.2016.22

Manu Sridharan and Rastislav Bodík. 2006. Refinement-based context-sensitive points-to analysis for Java. In Proceedings of
the ACM SIGPLAN 2006 Conference on Programming Language Design and Implementation, Ottawa, Ontario, Canada, June
11-14, 2006, Michael I. Schwartzbach and Thomas Ball (Eds.). ACM, 387–400. https://doi.org/10.1145/1133981.1134027

Manu Sridharan, Satish Chandra, Julian Dolby, Stephen J. Fink, and Eran Yahav. 2013. Alias Analysis for Object-Oriented
Programs. In Aliasing in Object-Oriented Programming. Types, Analysis and Verification, Dave Clarke, James Noble, and
Tobias Wrigstad (Eds.). Lecture Notes in Computer Science, Vol. 7850. Springer, 196–232. https://doi.org/10.1007/978-3-
642-36946-9_8

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://doi.org/10.4230/LIPIcs.ECOOP.2016.15
https://doi.org/10.4230/LIPIcs.ECOOP.2016.15
https://doi.org/10.1145/566172.566174
https://doi.org/10.1145/1044834.1044835
https://doi.org/10.1145/1133981.1134018
https://doi.org/10.1109/ICSE.2009.5070538
https://doi.org/10.1109/ICSE.2009.5070538
https://doi.org/10.1145/2594291.2594318
https://doi.org/10.1145/2594291.2594318
https://doi.org/10.1109/ICSE.2012.6227127
https://doi.org/10.1145/2892208.2892226
https://doi.org/10.1145/2259016.2259050
https://doi.org/10.1561/2500000014
https://doi.org/10.1145/2509136.2509524
https://doi.org/10.1145/2509136.2509524
https://doi.org/10.1145/1926385.1926390
https://doi.org/10.1145/2594291.2594320
https://doi.org/10.1145/2594291.2594320
https://doi.org/10.4230/LIPIcs.ECOOP.2016.22
https://doi.org/10.1145/1133981.1134027
https://doi.org/10.1007/978-3-642-36946-9_8
https://doi.org/10.1007/978-3-642-36946-9_8

1:40 Yue Li, Tian Tan, Anders Møller, and Yannis Smaragdakis

Manu Sridharan, Stephen J. Fink, and Rastislav Bodík. 2007. Thin slicing. In Proceedings of the ACM SIGPLAN 2007 Conference
on Programming Language Design and Implementation, San Diego, California, USA, June 10-13, 2007, Jeanne Ferrante and
Kathryn S. McKinley (Eds.). ACM, 112–122. https://doi.org/10.1145/1250734.1250748

Manu Sridharan, Denis Gopan, Lexin Shan, and Rastislav Bodík. 2005. Demand-driven points-to analysis for Java. In
Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2005, October 16-20, 2005, San Diego, CA, USA, Ralph E. Johnson and Richard P. Gabriel (Eds.).
ACM, 59–76. https://doi.org/10.1145/1094811.1094817

Yulei Sui and Jingling Xue. 2016. On-demand Strong Update Analysis via Value-flow Refinement. In Proceedings of the 2016
24th ACM SIGSOFT International Symposium on Foundations of Software Engineering (Seattle, WA, USA) (FSE 2016). ACM,
New York, NY, USA, 460–473. https://doi.org/10.1145/2950290.2950296

Tian Tan, Yue Li, and Jingling Xue. 2016. Making k-Object-Sensitive Pointer Analysis More Precise with Still k-Limiting. In
Static Analysis - 23rd International Symposium, SAS 2016, Edinburgh, UK, September 8-10, 2016, Proceedings (Lecture Notes
in Computer Science), Xavier Rival (Ed.), Vol. 9837. Springer, 489–510. https://doi.org/10.1007/978-3-662-53413-7_24

Tian Tan, Yue Li, and Jingling Xue. 2017. Efficient and precise points-to analysis: modeling the heap by merging equivalent
automata. In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2017, Barcelona, Spain, June 18-23, 2017, Albert Cohen and Martin T. Vechev (Eds.). ACM, 278–291. https://doi.org/
10.1145/3062341.3062360

Manas Thakur and V. Krishna Nandivada. 2019. Compare Less, Defer More: Scaling Value-contexts Based Whole-program
Heap Analyses. In Proceedings of the 28th International Conference on Compiler Construction (Washington, DC, USA) (CC
2019). ACM, New York, NY, USA, 135–146. https://doi.org/10.1145/3302516.3307359

Rei Thiessen and Ondřej Lhoták. 2017. Context Transformations for Pointer Analysis. In Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language Design and Implementation (Barcelona, Spain) (PLDI 2017). ACM, New
York, NY, USA, 263–277. https://doi.org/10.1145/3062341.3062359

Paolo Tonella and Alessandra Potrich. 2005. Reverse Engineering of Object Oriented Code. Springer. https://doi.org/10.1007/
b102522

Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie J. Hendren, Patrick Lam, and Vijay Sundaresan. 1999. Soot - a Java
bytecode optimization framework. In Proceedings of the 1999 conference of the Centre for Advanced Studies on Collaborative
Research, November 8-11, 1999, Mississauga, Ontario, Canada, Stephen A. MacKay and J. Howard Johnson (Eds.). IBM, 13.
https://doi.org/10.1145/781995.782008

WALA. 2018. Watson Libraries for Analysis. http://wala.sf.net.
Kai Wang, Aftab Hussain, Zhiqiang Zuo, Guoqing Xu, and Ardalan Amiri Sani. 2017. Graspan: A Single-machine Disk-based

Graph System for Interprocedural Static Analyses of Large-scale Systems Code. In Proceedings of the Twenty-Second
International Conference on Architectural Support for Programming Languages and Operating Systems (Xi’an, China)
(ASPLOS ’17). ACM, New York, NY, USA, 389–404. https://doi.org/10.1145/3037697.3037744

Shiyi Wei and Barbara G. Ryder. 2015. Adaptive Context-sensitive Analysis for JavaScript. In 29th European Conference on
Object-Oriented Programming, ECOOP 2015, July 5-10, 2015, Prague, Czech Republic (LIPIcs), John Tang Boyland (Ed.),
Vol. 37. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 712–734. https://doi.org/10.4230/LIPIcs.ECOOP.2015.712

John Whaley and Monica S. Lam. 2004. Cloning-based Context-sensitive Pointer Alias Analysis Using Binary Decision
Diagrams. In Proceedings of the ACM SIGPLAN 2004 Conference on Programming Language Design and Implementation
(Washington DC, USA) (PLDI ’04). ACM, New York, NY, USA, 131–144. https://doi.org/10.1145/996841.996859

Guoqing Xu and Atanas Rountev. 2008. Merging Equivalent Contexts for Scalable Heap-cloning-based Context-sensitive
Points-to Analysis. In Proceedings of the 2008 International Symposium on Software Testing and Analysis (Seattle, WA,
USA) (ISSTA ’08). ACM, New York, NY, USA, 225–236. https://doi.org/10.1145/1390630.1390658

Dacong Yan, Guoqing (Harry) Xu, and Atanas Rountev. 2011. Demand-driven context-sensitive alias analysis for Java. In
Proceedings of the 20th International Symposium on Software Testing and Analysis, ISSTA 2011, Toronto, ON, Canada, July
17-21, 2011. ACM, 155–165. https://doi.org/10.1145/2001420.2001440

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://doi.org/10.1145/1250734.1250748
https://doi.org/10.1145/1094811.1094817
https://doi.org/10.1145/2950290.2950296
https://doi.org/10.1007/978-3-662-53413-7_24
https://doi.org/10.1145/3062341.3062360
https://doi.org/10.1145/3062341.3062360
https://doi.org/10.1145/3302516.3307359
https://doi.org/10.1145/3062341.3062359
https://doi.org/10.1007/b102522
https://doi.org/10.1007/b102522
https://doi.org/10.1145/781995.782008
http://wala.sf.net
https://doi.org/10.1145/3037697.3037744
https://doi.org/10.4230/LIPIcs.ECOOP.2015.712
https://doi.org/10.1145/996841.996859
https://doi.org/10.1145/1390630.1390658
https://doi.org/10.1145/2001420.2001440

	Abstract
	1 Introduction
	2 Context Sensitivity: A Brief Review
	3 Causes of Imprecision in Context-Insensitive Pointer Analysis
	3.1 Pattern 1: Direct Flow
	3.2 Pattern 2: Wrapped Flow
	3.3 Pattern 3: Unwrapped Flow
	3.4 Combination of Flows

	4 Zipper
	4.1 Overview of Zipper
	4.2 Object Flow Graphs
	4.3 Precision Flow Graphs and Graph Reachability

	5 Zipper Express
	5.1 Insights of Zippere
	5.2 The Zippere Algorithm

	6 Evaluation
	6.1 RQ1: Precision and Efficiency of Zipper-Guided Pointer Analysis
	6.2 RQ2: Zipper-Guided Pointer Analysis vs. Introspective Pointer Analyses
	6.3 RQ3: Effect of Each Precision Loss Pattern
	6.4 Precision of Zipper for Simple Programs
	6.5 RQ4: Zipper for Other Context-Sensitivity Variants
	6.6 RQ5: Effectiveness of Zippere-Guided Pointer Analysis

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

