_ ectlo Analysis

7 a8 \

Yue Lj '~|an Tan and dingling Xue
Compliér'Research Group @ YNSW, Australia

| iy
g t‘ September 10, 2015

A4S 20

Static analysis for OO in practice ?

Static analysis for OO in practice ?

re re re ... reflection!

Class Person {
void setName(String nm) {...};

Person p = new Person();
p.setName("John");

Class Person {
void setName(String nm) {..};

Person p = new Person();
p.setName("John");

Class Person {
void setName(String nm) {..};

Person p = new Person();
p.setName("John");

Class Person {
void setName(String nm) {..};

Person p = new Person();
p.setName("John");

Methoy field

Class Person {
void setName(String nm) {..};

Person p = new Person();
p.setName("John"); class

S —— me'/'hod fie\d

Class ¢ = Class.forName("Person”);
Method m = c.getMethod("setName”, ...);

Object p = c.newInstance();

m.invoke(p, "John");

Class Person {
void setName(String nm) {...};

Person p = new Person();
p.setName("John");

Class Person {

p.setName("John");

void setName(String nm) {...};

Class ¢ = Class.forName("Person”);
Method m = c.getMethod("setName”, ...);

Object p = c.newInstance();
m.invoke(p, "John");

Class Person {

p.setName("John");

void setName(String nm) {...};

Class ¢ = Class.forName("Pesszs):

Method m = c.getMethod("setNene”, ..);

Object p = c.newInstance();
m.invoke(p, "John");

Class Person {
void setName(String nm) {..};

p.setName("John");

Class ¢ = Class.forName("Pesszs):

Class ¢ = Class.forName(cName);
Method m = c.getMethod(mName, ...);
A a = new A();

m.invoke(a, ...);

Class ¢ = Class.forName(cName);
Method m = c.getMethod(mName, ...);

A a = new A();
m.invoke(a, ...);

“

Method 3
Bug <

Class ¢ = Class.forName(cName);
Method m = c.getMethod(mName, ...);

A a = new A();
m.invoke(a, ...);

Method 3

Soundness

Soundness

Soundness

ECOOP’14

ICSE'11
OOPSLA09

APLAS 05 Z
;{c’)ot

P WALA £ ¢ Door
“ﬂdllddb =% jchord

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Soundness

Best-Effort

ECOOP’14
ICSE'11

OOPSLA09

APLAS’'05 P

woot

P WALA £ ¢ Door
“NIIIM” =% jchord

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Soundness

Best-Effort SAS5

ECOOP'14 .. SoLAR
ICSE’11 4
OOPSLA09

APLAS’'05

p
woot

¢ £ Doos
“ﬁdﬂlddb =% jchord

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Soundness

Best-Effort

SAS15

ICSE'11

APLAS’'05 P

ECOOP14 . SOLAR -

OOPSLA09

@ More sound

woot \
9 A8 EL Doop

Soundness

Best-Effort

SAS15

OOPSLA09

APLAS’'05 P

woot \
9 A8 EL Doop

ECOOP14 ™. SOLAR
ICSE’11 /

Unsoundness

"

@ More sound

Unsoundness

Soundness

Best-Effort SAS5

"

ECOOP14 ™. SOLAR
ICSE’11 /
OOPSLA09

, ~ @ More sound
APLAS’05 P

~oot @Con’rrollable
9" £ Door

Soundness

Best-Effort

SAS15

ICSE'11

ECOOP14 ™. SOLAR

OOPSLA09

APLAS’'05 P

woot
9 A8 ELr Doop

OVER N GUATTIORDECILION REEATIONS SERVED

Unsoundness

71

g Soundness Guided

@ Mor'e sound
@cOmrouaue

Java
Programs

SOLAR

@ More sound

@Con’rr‘ollable

> 4

- P

\
e L Automatic Identification Ff\&
Problematic Reflective Calls
=~ Scalable roblematic Reflectiv \Saﬁs fied | Soundness
N1) Lazy Heap Modelling)} Soundness Criteria > Proven
@:2) Collective Inference nscalable Imprecision Criteria
(by Customized Thresholds) Violated
Lightweight Annotations [Impreicse |[Unsound |
Reflective Calls
———
J

Java
Programs

SOLAR

@ More sound

N1) Lazy Heap Modelling

Scalable

)/nscalable

@:2) Collective Inference

Lightweight Annotations

Automatic Identification of

.

Problematic Reflective Calls

\

Satisfied

Soundness

Soundness Criteria

Imprecision Criteria
(by Customized Thresholds)

| Impreicse || Unsound |«

Reflective Calls
e

Violated

>
Proven

The Challenging Problem

unknown

l Class ¢ = Class.forName(cName) |

| i:Object v = cl.newInstance() |

Existing Approach

unknown

l Class ¢ = Class.forName(cName) |
—

i:Object v = cl.newInstance()

Aa=(A)v2

Intra-procedural post-dominant cast operations

Existing Approach

unknown

cA | Class ¢ = Class.forName(cName) |

pa—

i:Object v = cl.newInstance()

Aa=(A)v2

Intra-procedural post-dominant cast operations

Existing Approach

/ unknown
cA ‘ Class c = Class.forName(cName) |
—

i:Object v = cl.newInstance()

Aa=(A)v2

Intra-procedural post-dominant cast operations

only works for this intra-post-dominance pattern

Existing Approach

unknown

Aa=(A)v2

Intra-procedural post-dominant cast operations

only works for this intra-post-dominance pattern

Lazy Heap Modeling (LHM)

Lazy Heap Modeling (LHM)

Observation

A reflectively created object
(returned by newlnstance())
Is usually used in two cases in practice

Lazy Heap Modeling (LHM)

Observation

A reflectively created object
(returned by newlnstance())
Is usually used in two cases in practice

Intuition

The side effect of a newlnstance() call
can be modeled
lazily at these usage points

Lazy Heap Modeling (LHM)

unknown

l Class ¢ = Class.forName(cName) |

| i:Object v = cl.newInstance() |

Lazy Heap Modeling (LHM)

unknown

] | Class ¢ = Class.forName(cName) |
C

| i:Object v = cl.newInstance() |

Lazy Heap Modeling (LHM)

unknown

] | Class ¢ = Class.forName(cName) |
C
| i:Object v = cl.newInstance() |

O;

Lazy Heap Modeling (LHM)

unknown

] | Class ¢ = Class.forName(cName) |
C
| i:Object v = cl.newInstance() |

O;

Abstract Heap Objects
of newInstance()
are created lazily

(at LHM)

Lazy Heap Modeling (LHM)

unknown

] | Class ¢ = Class.forName(cName) |
C

i:Object v = cl.newInstance()

Case ()

Abstract Heap Objects
of newInstance()
are created lazily

(ot LHMEIRR)

Lazy Heap Modeling (LHM)

/ unknown
l Class ¢ = Class.forName(cName) |
CU
i:Object v = cl.newInstance()
Case (I)
Abstract Heap Objects Type | Object | Location | Pointed by
of newInstance() Al of | i | a
are created lazily B | o8 | i | b

(ot LHMEIRR)

Lazy Heap Modeling (LHM)

/ unknown
] | Class ¢ = Class.forName(cName) |
C

i:Object v = cl.newInstance()

ml.invoke(v3, args)

Case (D Case (1)
Abstract Heap Objects Type | Object | Location | Pointed by
of newInstance() Al of | i | a
are created lazily B | o | i | b

(ot LHMEIRR)

Lazy Heap Modeling (LHM)

‘/ unknown
] | Class ¢ = Class.forName(cName) |
C

i:Object v = cl.newInstance() Method m = c2.getDeclaredMethod(mName, ...)

N~

ml.invoke(v3, args)

Case (D Case (1)
Abstract Heap Objects Type | Object | Location | Pointed by
of newInstance() Al of | i | a
are created lazily B | o | i | b

(ot LHMEIRR)

Lazy Heap Modeling (LHM)

‘/ unknown
Class ¢ = Class.forName(cName) D
o ,_L—g A
; o
i:Object v = cl.newInstance() Method m = c2.getDeclaredMethod(mName, ...)

N~

ml.invoke(v3, args)

Case (D Case (1)
Abstract Heap Objects Type | Object | Location | Pointed by
of newInstance() Al of | i | a
are created lazily B | o | i | b

(ot LHMEIRR)

Lazy Heap Modeling (LHM)

‘/ unknown
Class ¢ = Class.forName(cName) D
o ,_L—g A
; o
i:Object v = cl.newInstance() Method m = c2.getDeclaredMethod(mName, ...)

ml.invoke(v3, args)
e ——

Case (I v3.mName(args) Case (ID)

Abstract Heap Objects Type | Object | Location | Pointed by
of newInstance() Al of | i | a
are created lazily B | o8 | i | b

(ot LHMEIRR)

Lazy Heap Modeling (LHM)

‘/ unknown
] Class ¢ = Class.forName(cName) cD
C ,_L—QFJ
i:Object v = cl.newInstance() Method m = c2.getDeclaredMethod(mName, ...)

ml.invoke(v3, args)
e ——

Case (I v3.mName(args) Case (ID)

Abstract Heap Objects Type | Object | Location | Pointed by
of newInstance() Al of | i | a
are created lazily B | o8 | i | b

CETED I

Lazy Heap Modeling (LHM)

‘/ unknown
] Class ¢ = Class.forName(cName) cD
C ,_L—QKJ
i:Object v = cl.newInstance() Method m = c2.getDeclaredMethod(mName, ...)

ml.invoke(v3, args)
e ——

Case (I v3.mName(args) Case (ID)

Abstract Heap Objects Type | Object | Location | Pointed by
of newInstance() Al of | i | a
are created lazily B B b

(ot LHMEIRR)

Lazy Heap Modeling (LHM)

‘/ unknown
] Class ¢ = Class.forName(cName) cD
C ,_L—QKJ
i:Object v = cl.newInstance() Method m = c2.getDeclaredMethod(mName, ...)

ml.invoke(v3, args)
e ——

Case (I v3.mName(args) Case (ID)

Abstract Heap Objects Type | Object | Location | Pointed by
of newInstance() Al of | i | a
are created lazily

(ot LHMEIRR)

Lazy Heap Modeling (LHM)

‘/ unknown
] Class ¢ = Class.forName(cName) cD
C ,_L—QKJ
i:Object v = cl.newInstance() Method m = c2.getDeclaredMethod(mName, ...)

ml.invoke(v3, args)
e ——

Case (I v3.mName(args) Case (ID)

Abstract Heap Objects Type | Object | Location | Pointed by
of newInstance() Al of | i | a

are created lazily —e ot
(ot LHMEIRR) >
B

w| O
o | o
I
< | <
w| w
*=

|
|
| o | i | b,v3

©

Lazy Heap Modeling (LHM)

unknown

Class ¢ = Class.forName(cName)

e

—
Method m = c2.getDeclaredMethod(mName, ...)

N~

ml.invoke(v3. 10.>)

W AR B

stance()

- %A

v3.mName(args)

Case (I) e ————— Case (II)
Abstract Heap Objects Type | Object | Location | Pointed by
of newInstance() Al of | i | a

are created lazily —e ot
(ot LHMEIRR) o
0B

“
i
oﬂ}é

|
|
| o | i | b,v3

©

Inference System of Solar

Collective Inference

o0 = newlnstance() €= m.invoke(o,...), f.get(o), f.set(o, ...)

Java
Programs

SOLAR

@ More sound

N1) Lazy Heap Modelling

Scalable

)/nscalable

@:2) Collective Inference

Lightweight Annotations

Automatic Identification of

.

Problematic Reflective Calls

\

Satisfied

Soundness

Soundness Criteria

Imprecision Criteria
(by Customized Thresholds)

| Impreicse || Unsound |«

Reflective Calls
e

Violated

>
Proven

Java
Programs

SOLAR

@Con’rrollable

> 4

Scalable

N1) Lazy Heap Modelling

Unscalable

@) Collective Inference

Lightweight Annotations

| Automatic Identification oT™~

N

Problematic Reflective Calls

\Sa’risf ied

\

Soundness

Soundness Criteria

Imprecision Criteria
(by Customized Thresholds)

Violated

| Impreicse || Unsound |

Reflective Calls
e

>
Proven

SOLAR

@Con’rr‘ollable

¥

e \
| Automatic Identification of L
Problematic Reflective Calls
Java Scalable . d ! v Satisfied Soundness
Programs N1) Lazy Heap Modelling B Soundness Criteria ® Proven
N2) Collective Inference Unscalable Imprecision Criteria
C) (by Celstomized Thresholds) Violated
Lightweight Annotations I Impreicse ” Unsound I<
Reflective Calls
"
\ J

Soundness Criteria

If the information in a program is not enough to help infer
the reflective targets, the soundness criteria is not satisfied

Lazy Heap Modeling (LHM)

‘/ unknown
] Class ¢ = Class.forName(cName) cD
C ,_L—QFJ
i:Object v = cl.newInstance() Method m = c2.getDeclaredMethod(mName, ...)

ml.invoke(v3, args)
e ——

Case (I v3.mName(args) Case (ID)

Abstract Heap Objects Type | Object | Location | Pointed by
of newInstance() Al of | i | a
are created lazily B | o | i | b, v3

CETED RN

Lazy Heap Modeling (LHM)

‘/ unknown
Class ¢ = Class.forName(cName) 3
c K_J .
i:Object v = cl.newInstance() Method m = c2.getDeclaredMethod(mName, ...)

ml.invoke(v3, args)
e ——

Case (I v3.mName(args) Case (ID)

Abstract Heap Objects Type | Object | Location | Pointed by
of newInstance() Al of | i | a
are created lazily B | o | i | b, v3

CETED RN

Lazy Heap Modeling (LHM)

‘/ unknown
Class ¢ = Class.forName(cName) 3
c K_J .
i:Object v = cl.newInstance() Method m = c2.getDeclaredMethod(mName, ...)

ml.invoke(v3, args)
e ——

Case (I) v3.mName(args) o (H)

Abstract Heap Objects Type | Object | Location | Pointed by
of newInstance() Al of | i | a
are created lazily B | o | i | b, v3

CETED RN

Lazy Heap Modeling (LHM)

unknown

Class ¢ = Class.forName(cName) 3
4

¥ = =
wol
‘ i:Object v = cl.newInstance() ’ Method m = c2.getDeclaredMethod(mName, ...)

Aa=(A)vl Bb=(B)v2 ml.invoke(v3, args)

Case (I) v3.mName(args) e (I

Abstract Heap Objects Type | Object | Location | Pointed by
of newInstance() Al of | i | a
are created lazily B | o | i | b, v3

(arEHMIZTED D1 o | i | 3

Lazy Heap Modeling (LHM)

unknown

Class ¢ = Class.forName(cName) 3
= - | .

WS el? S
‘ i:Object v = cl.newInstance() ’ Method m = c2.getDeclaredMethod(mName, ...)

Aa=(A)vl Bb=(B)v2 ml.invoke(v3, args)

Case (I) v3.mName(args) e (ID)

Abstract Heap Objects Type | Object | Location | Pointed by
of newInstance() Al of | i | a
are created lazily B | o | i | b, v3

(arEHMIZTED D1 o | i | 3

SOLAR

@Confrollable

> 4

Java Scalable

Programs

N1) Lazy Heap Modelling
@) Collective Inference

Unscalable

Lightweight Annotations

| Automatic Identification oT™~

Problematic Reflective Calls

\ Satisfied

\

Soundness

Soundness Criteria

Imprecision Criteria
(by Customized Thresholds)

Violated

| Impreicse || Unsound |«

Reflective Calls

J

Soundness Criteria

(by Customized Thresholds)

>
Proven

If the information in a program is not enough to help infer
the reflective targets, the soundness criteria is not satisfied

Imprecision Criteria The number of the reflective targets resolved or inferred

Java
Programs

SOLAR

@ More sound

@Con’rr‘ollable

> 4

- P

\
e L Automatic Identification Ff\&
Problematic Reflective Calls
=~ Scalable roblematic Reflectiv \Saﬁs fied | Soundness
N1) Lazy Heap Modelling)} Soundness Criteria > Proven
@:2) Collective Inference nscalable Imprecision Criteria
(by Customized Thresholds) Violated
Lightweight Annotations [Impreicse |[Unsound |
Reflective Calls
———
J

Java
Programs

SOLAR

\
| Automatic Identification of L
Probl tic Reflective Call.
Scalable . roblematic Rerectiv ° Satisfied Soundness
N1) Lazy Heap Modelling = Soundness Criteria > Proven
N2) Collective Inference Unscalable Imprecision Criteria
C) (by C‘L)/stomized Thresholds) Violated

Lightweight Annotations

| Impreicse || Unsound |«

Reflective Calls
"

Evaluation

SOLAR vs Door
ELF

Evaluation

SOLAR vg DOOP
ELF

Large real-world Java benchmarks and applications

Large and reflection-rich Java library: JDK 1.6

@ More sound

Recall

Recall: measured by the number of true reflective targets discovered at
reflective call sites that are dynamically executed under certain inputs

@ More sound

Recall

Recall: measured by the number of true reflective targets discovered at
reflective call sites that are dynamically executed under certain inputs

Only Solar achieves total recall :
all the true reflective targets found in recall are resolved by Solar.

The benefit of achieving higher recall:
more true call graph edges discovered

The benefit of achieving higher recall:
more true call graph edges discovered

The true call graph edges are computed by instrumentation at runtime

freecs | 32 B SOLAR - ELF
findbugs W ELF- DoOoOP
checkstyle

avrora
xalan
pmd
hsqldb
fop
eclipse 20400

chart

0 5000 10000 15000 20000

The figure shows the more true call graph edges found in recall by
Solar than EIf (Solar - EIf) and by EIf than Doop (EIf - Doop)

@ More sound

Precision

Insight: Soundness <-> precision.
Solar achieves higher recall (more sound), indicates worse precision ?

@ More sound

Precision

Insight: Soundness <-> precision.
Solar achieves higher recall (more sound), indicates worse precision ?

No!
Solar maintains nearly the same precision as Doop and Elf (2 popular clients).

Precision

chart|eclipse| fop |hsqldb| pmd |xalan|avrora|checkstyle|findbugs|freecs

Devir| Door| — |94.94 (93.04] — 192.65(93.49(94.79 93.16 92.32 |95.46
Call | ELr |93.53| 88.07 (92.34| 94.80 |92.87|92.70| 94.50 93.19 92.53 [94.94
(%) |SOLAR|93.51| 87.69 |92.26| 94.51 [92.39|92.65| 92.43 93.39 92.37 |95.26

Safe [Doop| — | 59.34 |53.68| — [45.40|57.97| 56.12 50.19 45.78 |59.71
Cast | ELF [49.80| 40.71 |55.40| 53.65 |48.24(59.24| 57.27 51.79 48.54 |[59.14
(%) [SOLAR|49.53| 38.04 |54.21| 53.11 [44.53(59.11| 52.56 49.40 43.60 |57.96

Devir Call: the percentage of the virtual calls whose targets can be disambiguated
Safe Case: the percentage of the casts that can be statically shown to be safe

@Com‘rollable

(2)Controllable

In 10 evaluated programs, 7 can be analyzed scalably and soundly
by Solar with full automation.

(2)Controllable

In 10 evaluated programs, 7 can be analyzed scalably and soundly
by Solar with full automation.

For the remaining 3 programs, Probe is scalable and reports
13 unsound calls and 1 imprecise call.

(2)Controllable

In 10 evaluated programs, 7 can be analyzed scalably and soundly
by Solar with full automation.

For the remaining 3 programs, Probe is scalable and reports
13 unsound calls and 1 imprecise call.

After manual check, all the identified
14 unsound/imprecise calls are the true ones.

(2)Controllable

In 10 evaluated programs, 7 can be analyzed scalably and soundly
by Solar with full automation.

For the remaining 3 programs, Probe is scalable and reports
13 unsound calls and 1 imprecise call.

After manual check, all the identified
14 unsound/imprecise calls are the true ones.

Probe also reports 7 corresponding annotation points
for these 14 unsound/imprecise calls

(2)Controllable

In 10 evaluated programs, 7 can be analyzed scalably and soundly
by Solar with full automation.

For the remaining 3 programs, Probe is scalable and reports
13 unsound calls and 1 imprecise call.

After manual check, all the identified
14 unsound/imprecise calls are the true ones.

Probe also reports 7 corresponding annotation points
for these 14 unsound/imprecise calls

After the 7 light-weight annotations,
Solar can analyze these 3 programs scalably and soundly

Performance

chart |eclipse| fop |hsqldb|pmd [xalan|avrora|checkstyle|[findbugs|freecs|Average
Door| - 321 | 779 — 226 | 254 | 188 256 718 422 —
ELF | 3434 | 5496 (2821 1765 [1363| 1432 | 932 1463 2281 | 1259 1930
SOLAR|4543| 10743 |4303| 2695 (2156|1701 | 3551 2256 8489 | 2880 3638

@ More sound

@Confr‘ollable

Potential Impact

@ More sound

WALA
‘ e ®OOP Reflection
p _ _ Andlysis » Hundreds of Papers & Tools
Soot pidbdgy %jchord

Potential Impact

@ More sound

)’c;ot pidbdgy %jchord

SOLAR

» Hundreds of Papers & Tools

Potential Impact

@ More sound

)’Sot pidbdgy %jchord

SOLAR

» Hundreds of Papers & Tools

Nothing needs
to change

Potential Impact

@ More sound
WALA
‘ Door S Hundreds of P & Tool
. » ' OLAR » undreds of Papers & Tools
Soot pidbdgy %jchord

Nothing needs More bugs,
to change etc.

Potential Impact

@ More sound
‘ WALA Door
SOLAR » Hundreds of Papers & Tools
,’ .
Joor WG i
Nothing needs More bugs,
to change etc.

@Con’rr‘ollable

» A static bug verification tool reports no bugs.
4 reflective calls are identified unsoundly analyzed by Solar

Potential Impact

@ More sound
¥ WAL Doop
SOLAR » Hundreds of Papers & Tools
,’ .
Joor WG i
Nothing needs More bugs,
to change etc.

@Con’rr‘ollable

» A static bug verification tool reports no bugs.
4 reflective calls are identified unsoundly analyzed by Solar

» A static bug detection tool reports 10 bugs.
All reflective calls are reported soundly analyzed by Solar

http://www.cse.unsw.edu.au/~corg/solar
SoLAR - Effective Soundness-Guided Reflection Analysis

Authors

Yue Li Tian Tan Jingling Xue COmpiler Research Group@UNSW

Description

Souar is a static analysis framework that strives to automate sound reflection analysis for Java programs (under some assumptions) introduced in our paper titled
"Effective Soundness-Guided Reflection Analysis", SAS'2015. SoLar can identify the places in a program where reflection is resolved unsoundly or imprecisely,
enabling lightweight annotations to improve the quality of analysis and make the analysis controllable.

Sowanr is implemented on top of ELr. To ease the understanding of the Datalog rules used in our implementation, we have rewritten the rules inherited from ELr and
added new ones in a uniform manner. Users are expected to understand how different parts of the Java reflection API are handled easily and precisely when
applying SoLar to analyse their applications.

Sovar can output its reflection analysis results with the format that is supported by Soot. You can let Soot receive the results of SoLar easily by following the
instructions in the tutorial.

Downloads

The tar.gz file includes four important files:

o tutorial: a step-by-step guide to installing SoLar on top of Door (version r160113) by using the two patch files (available below). The main differences between
SoLar and Door are also summarised.

o solar.patch: a patch file for updating the Datalog rules and some auxiliary scripts used in Door.
o gen.patch: a patch file for updating the fact generator (version r858) provided by Door.
o _Unknown_.class: an auxiliary class which is used to introduce the Unknown type into the existing type system. In addition, this class will help SoLar soundly

model the pointer-affecting methods, such as getClass() and toString(), which are directly invoked on the unknown objects. See the comments in the
_Unknown__.java file for details.

+ SOLAR-0.1.tar.gz
Acknowledgements

The authors wish to thank the Door team for making Door available, and LogicBlox Inc. for providing us its Datalog engine.

Static analysis for OO in practice ?

Static analysis for OO in practice ?

Reflection

Thank You

Yue Li

CORG @ UNSW, Australia
September 10, 2015

@ More sound
@Confr‘ollable

Light-weight Annotations

freecs B SOLAR

findbugs B Others
checkstyle

avrora
xalan
pmd
hsqldb
fop
eclipse

chart

0 5 10 15 20 25 30 35 40 45

The number of annotations required for improving the soundness of
unsoundly resolved reflective calls. Others: 338 vs Solar: 7

